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a b s t r a c t

This paper addresses observability and detectability of discrete-time periodic systems with nonhomoge-
neous Markov jump parameter. Popov–Belevitch–Hautus (PBH)-type criteria are proposed for the con-
cerned structural properties. It is shown that, different from stochastic systemswith constant coefficients
or homogeneous Markov chain, the spectral criteria of considered plants do not rely on a single operator
but on a finite sequence of linear evolution operators. By use of the obtained detectability criterion, an
extended Lyapunov theorem is established, which relates asymptotic mean square stability to a periodic
Lyapunov equation. Further, a difference Riccati equation with periodic coefficients is studied and some
sufficient conditions are presented for the existence of stabilizing solution.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Observability and detectability are two fundamental concepts
in the modern control theory. It is well known that, for linear
constant systems, spectral criteria are available to examine these
properties in terms of the eigenvalues of ‘‘A’’ matrix, which are
the famous PBH tests (see Rugh, 1996). Due to widespread appli-
cations, stochastic systems have received considerable attention
in recent years (Costa, Fragoso, & Todorov, 2012; Petersen, Ugri-
novskii, & Savkin, 2000). By means of different formulations,
several structural concepts have been introduced for various
stochastic models, such as exact controllability (Liu & Peng, 2002),
null controllability (Shen, Sun, & Wu, 2013a), exact observability
(Zhang & Chen, 2004) and exact detectability (Zhang, Zhang, &
Chen, 2008) of stochastic Itô systems,W-observability/detectability
of Markov jump systems (Costa & Do Val, 2001, 2002), stochas-
tic observability/detectability of Markov jump systems with
multiplicative noise (Dragan & Morozan, 2006; Dragan, Morozan,
& Stoica, 2010). Particularly, in parallel with the deterministic PBH
tests, stochastic PBH tests have been established based on the
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spectrum of associated Lyapunov operators. More specifically,
stochastic PBH criterion was first developed by Zhang and Chen
(2004) for observability of linear stochastic Itô systems. Later, exact
detectability was proposed in Zhang et al. (2008), where the spec-
tral criterion of detectability was supplied to settle an infinite hori-
zonH2/H∞ control problem. As the latest progress on this issue, Ni,
Zhang, and Fang (2010) and Shen, Sun, andWu (2013b) have gener-
alized the works of Zhang and Chen (2004), Zhang et al. (2008) to
continuous- and discrete-time linear Markov jump systems with
multiplicative noises, respectively. More importantly, it is clari-
fied that the notions of W-detectability (resp. stochastic observ-
ability) and exact detectability (resp. exact observability) are really
equivalent (Shen et al., 2013b), which exhibits the effectiveness of
spectral criteria. Despite the great achievements in structural anal-
ysis of stochastic systems, it should be pointed out that the exist-
ing stochastic PBH criteria are all devoted to stochastic systems
with time-invariant coefficients or homogeneous Markov chain.
This is mainly because the current spectrum analytic technique
relies severely on a Lyapunov operator arising from the second-
order state moment of related stochastic systems. If the system
coefficients or the transition probability of Markov chain are time-
varying, the spectrum set of Lyapunov operator will be no more
stationary. Hence, the previous spectral approach fails to treat
stochastic systems with time-varying coefficients or nonhomoge-
neous Markov process.

In this paper, we aim to set up PBH-type criteria for observabil-
ity and detectability of discrete-time periodic Markov jump sys-
tems (DPMJS). The system coefficients and transition probability
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matrix of Markov jump parameter allow to be periodically time-
varying. Such type of models have been applied to communication
networks (Aberksne&Dragan, 2012), portfolio optimization (Costa
& Araujo, 2008), etc. Moreover, control issues of Markov jump sys-
tems with time-varying coefficients or nonhomogeneous Markov
process have been extensively researched; see Aberksne (2011),
Dragan et al. (2010), Dragan, Morozan, and Stoica (2014), Ma and
Jia (2013),Ma, Zhang, andHou (2012) and references therein. How-
ever, to the best of our knowledge, there is no similar result re-
ported for the structural properties of such dynamics up to now. To
fill this gap, this work is to develop a spectrum analytic approach
suitable for analyzing DPMJS with periodically time-varying tran-
sition probability. The key lies in a novel theoretical tool, named
‘‘monodromy operator’’, which is first put forward and will play
a central role in the structural analysis of DPMJS. By means of
the monodromy operator, spectral criteria are successfully estab-
lished for observability and detectability of DPMJS. In contrast to
the stochastic PBH criteria for stochastic time-invariant systems
(Qi, 2008; Zhang & Chen, 2004; Zhang et al., 2008), or homoge-
neous Markov jump systems (Ni et al., 2010; Shen et al., 2013b),
it is demonstrated that the spectral criteria of DPMJS not only de-
pend on themonodromy operator, but also have close connections
with a sequence of linear evolution operators. As theoretical appli-
cation, we will employ the obtained spectral criteria to study the
asymptotic mean square stability of DPMJS, for which an extended
Lyapunov theorem is presented in terms of a periodic Lyapunov
equation. Besides, a class of difference Riccati equations with peri-
odic coefficients are studied, and some sufficient conditions for the
existence of stabilizing solution are supplied under the assump-
tions of observability and detectability.

The rest of this paper is organized as follows. In Section 2, we
introduce a monodromy operator, and then give a spectral char-
acterization of stability. Based on the spectrum of the monodromy
operator, PBH-type criteria of observability and detectability with
their applications are presented in Section 3. Finally, Section 4 ends
this paper with a concluding remark.

Notations. Cn(Rn): n-dimensional complex (real) space with
Euclidean norm ∥ · ∥; Rn×m: the space of n × m real matrices with
operator norm ∥ · ∥2; Sn: the set of n × n symmetric matrices,
whose entries may be complex; A > 0(≥ 0): A is positive (semi-
)definite; A′: the transpose of A; In: the n×n identity matrix; Z+ =

{0, 1, . . .} and Z1+ = Z+/{0}; C: the set of complex numbers;
⊗: the operation of Kronecker product; Ker(·): the kernel of
a matrix; diag{·}: a (block-)diagonal matrix; 1(·): the indicator
function.

2. Preliminaries

On a complete probability space (Ω,F ,P ), we consider the
following discrete-time linear periodic Markov jump systems:
x(t + 1) = A(t, ηt)x(t),
z(t) = C(t, ηt)x(t), t ∈ Z+,

(1)

where x(t) ∈ Rn and z(t) ∈ Rnz denote the system state and
measurement output, respectively. Let {ηt}t∈Z+ be a Markov chain
with the state space D and the transition probability matrix Pt =

[pt(i, j)]N×N . There hold pt(i, j) ≥ 0 and
N

j=1 pt(i, j) = 1 for
t ∈ Z+ and i ∈ D = {1, 2, . . . ,N}. The initial distribution
of ηt at t0 is represented by πt0 = (πt0(1), . . . , πt0(N)) where
πt0(i) := P (ηt0 = i) ≥ 0. Moreover, all the coefficients of
(1) are θ-periodic matrices of suitable dimensions, e.g., A(t, i) =

A(t + θ, i) ∈ Rn×n, and the transition probability of ηt satisfies
pt(i, j) = pt+θ (i, j) (i, j ∈ D), where θ ∈ Z1+.

The following definitions are basic in the subsequent analysis.

Definition 1 (Dragan et al., 2010). The zero state equilibrium of
autonomous discrete-time periodic Markov jump systems:

x(t + 1) = A(t, ηt)x(t), t ∈ Z+ (2)

or (A; P) is asymptotically mean square stable (AMSS) if limt→∞ E
∥x(t; x(t0), πt0)∥

2
= 0 for any t0 ∈ Z+, x(t0) ∈ Rn, and arbitrary

initial distribution πt0 of the Markov chain.

Definition 2. System (1) or (A,C; P) is observable at time t0 if for
arbitrary initial distribution πt0 of the Markov chain, there holds

z(t) ≡ 0 (a.s.) for t ∈ [t0,∞) ⇒ x(t0) = 0 (a.s.). (3)

Moreover, (A,C; P) is (uniformly) observable if it is observable for
all t0 ∈ Z+.

Definition 3. (A,C; P) is (uniformly) detectable if for any t0 ∈ Z+,
x(t0) ∈ Rn, and arbitrary initial distribution πt0 of the Markov
chain, there holds

z(t) ≡ 0 (a.s.) for t ∈ [t0,∞)

⇒ lim
t→∞

E∥x(t; x(t0), πt0)∥
2

= 0. (4)

Remark 1. As usual, if x(t0) = ξ ∈ Rn is a state such that z(t) ≡ 0
almost surely for all t ≥ t0, then ξ is called an unobservable state
of (1) at t0. It can be checked that the set of all unobservable states
of (1) at each t ∈ Z+, denoted by Ōt , is a subspace of Rn. Obviously,
(A,C; P) is observable at t if and only if (iff) Ōt = {0}.

Let SNn (resp. SN+
n ) be the set of all N sequences V = (V (1),

. . . , V (N)) with V (i) ∈ Sn (resp. V (i) ≥ 0). Thus, SNn is a Hilbert
space with the inner product:

⟨U, V ⟩ =

N
i=1

Tr(U(i)V (i)), ∀U, V ∈ SNn . (5)

Define a Lyapunov operator Lt : SNn → SNn as Lt(U) = (Lt(U, 1),
. . . , Lt(U,N)), where

Lt(U, i) =

N
j=1

pt(j, i)A(t, j)U(j)A(t, j)′, ∀U ∈ SNn . (6)

Associated with the inner product (5), the adjoint operator of Lt is
given by L ∗

t (U) = (L ∗
t (U, 1), . . . , L ∗

t (U,N)):

L ∗

t (U, i) = A(t, i)′
N
j=1

pt(i, j)U(j)A(t, i), ∀U ∈ SNn . (7)

Based on Lt , we can get a causal evolution Tt,s = Lt−1 · · · Ls (t >
s ≥ 0), which is easily verified to be a linear positive operator.
When t = s, Tt,t = I (i.e., the identity operator).

Definition 4. T θ
t = Tt+θ,t is called the monodromy operator of

(A; P).

From (6), it is obvious that Lt+θ = Lt , thus the following
properties are straightforward.

Proposition 1. (i) Tt,s = Tt+θ,s+θ ; (ii) T θ
t = T θ

t+θ .

By using the H-representation method (Zhang & Chen, 2012),
there are a unique triple of constant matrices H ∈ Rn2N×

n(n+1)
2 N ,

Mt ∈ Rn2N×n2N and Lt ∈ R
n(n+1)

2 N×
n(n+1)

2 N such that
ψ(Lt(X)) = Mtψ(X), ϕ(Lt(X)) = Ltϕ(X),
ψ(X) = Hϕ(X), ∀X ∈ SNn .

(8)
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