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a b s t r a c t

The stabilization problem of a class of nonlinear systems with actuator saturation is investigated via
active disturbance rejection control (ADRC). We first present results for systems with nonlinear ADRC
and show that local stabilization can be achieved in a region including the origin. Then, for the linear
ADRC, the linear matrix inequality (LMI) conditions for determining the estimate of the domain of
attraction of the resulting closed-loop system are formulated based on a quadratic candidate Lyapunov
function and a generalized sector condition. An LMI-based algorithm is correspondingly established to
design the linear ADRC controller. The obtained results suggest a new way to stabilize the saturated
nonlinear system, even in the case that the state of the system is not fully available for measurement
and system nonlinear dynamics are largely unknown. An illustrative example validates the effectiveness
of the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Actuator saturation affects virtually all practical control sys-
tems. It may lead to performance degradation and even induce
instability. In the past few decades, the problems of analysis and
design of linear systems with actuator saturation have been ex-
tensively studied (see, e.g., Dai, Hu, Teel, & Zaccarian, 2009; Lin
& Saberi, 1993; Sontag, 1984; Teel, 1992; and Weston & Postleth-
waite, 2000). It is nowwell-recognized that only local stabilization
can be achieved if a linear system is open-loop unstable. In this
case, it is quite natural to design a control law with the objective
of enlarging the domain of attraction of the resulting closed-loop
system. Since the exact characterization of the domain of attrac-
tion is almost impossible, many researchers have devoted to en-
larging an estimate of it (Cao, Lin, & Ward, 2002; Gomes da Silva &
Tarbouriech, 2001; Li & Lin, 2013; Lu & Lin, 2010; Zhou, Zheng, &
Duan, 2010).
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However, most practical control systems are inherently nonlin-
ear, and the number of available results by taking actuator satu-
ration into account in the design and analysis of nonlinear control
systems is still limited. Due to the difficulty of the problem itself,
most researchers have focused their attention on particular classes
of nonlinear systems and designed dedicated controllers for that
class. For example, Coutinho and Gomes da Silva (2007) devised a
generic method for obtaining the estimates of the domain of at-
traction of a class of nonlinear systems that can be put in a rational
algebraic-differential form. In Castelan, Tarbouriech, and Queinnec
(2008), the stability and stabilization problems of a class of non-
linear systems consisting of a linear system affected by a state-
dependent nonlinearity belonging to a general class of sectors
and subject to actuator saturation were considered. Valmórbida,
Tarbouriech, and Garcia (2010) proposed a method to design sta-
bilizing state feedback control laws for nonlinear quadratic sys-
tems with actuator saturation. In addition, several papers have
appeared on input-constrained feedback linearizable nonlinear
systems under nonlinear dynamic inversion control (Gußner, Jost,
& Adamy, 2012; Herrmann, Menon, Turner, Bates, & Postlethwaite,
2010; Yoon, Park, & Yoon, 2008).

On the other hand, active disturbance rejection control
(ADRC) is an effective method to deal with nonlinear system,
especially when its dynamics are largely unknown. ADRC was
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originally2 proposed by Han in 1980s (Han, 1989, 1995, 1998).
This methodology requires very little information about the plant
dynamics and is easy to be implemented. The essential of ADRC is
to treat the unknown dynamics as an extended state of the plant,
and then estimate it using an extended state observer (ESO) and
compensate for it in real time. ADRC has found wide industrial
applications even though its theoretical justification was lagging
behind for quite some time (see, e.g., Li, Yang, & Yang, 2009; Talole,
Kolhe, & Phadke, 2010; Wu & Chen, 2009 and Zheng, Dong, Lee,
& Gao, 2009). In a pair of recent papers, Guo and Zhao (2011,
2013) gave a rigorous proof of the convergence of ESO and ADRC.
For more applications of ADRC and the progress of its theoretical
analysis, one can refer to a recent survey paper (Huang & Xue,
2014).

This paper studies the stabilization problem of a class of
input-constrained nonlinear systems that incorporate ADRC laws.
Since we consider a general class of nonlinear systems, we will
restrict ourselves to the local stabilization problem. We first
show that, with the application of the nonlinear ADRC, the
considered nonlinear system is asymptotically stable in a region
including the origin. Then, we consider a class of special ADRC,
the linear ADRC. By using a quadratic candidate Lyapunov function
and the generalized sector condition established in Tarbouriech,
Prieur, and Gomes da Silva (2006), the conditions developed to
address local stabilization problem are formulated in linear matrix
inequalities (LMIs) form. As a result, an LMI-based algorithm is
correspondingly established to design the linear ADRC controller,
with the objective of enlarging the domain of attraction of the
closed-loop system.

Our results are motivated by the works in Freidovich and Khalil
(2008), Guo and Zhao (2011, 2013), Han (2009), Nazrulla and Khalil
(2011) and Tarbouriech et al. (2006). The first contribution of this
paper is to prove that local stabilization can be achieved for a class
of saturated nonlinear systems by using an ADRC law. Note that
Freidovich and Khalil (2008) and Guo and Zhao (2013) have shown
that semi-global stabilization can be achieved via a bound ADRC
law. However, the saturation bound they considered is utilized to
avoid the peaking phenomenon caused by the high gain in the ESO,
and its value depends on the initial state of the closed-loop system.
In this paper, we consider the saturation caused by the inherent
actuator limitations and its bound value is in general fixed. The
second contribution is to establish an LMI-based framework for
the analysis and design of the linear ADRC controller for input-
constrained nonlinear systems.
Notation. R is the set of real numbers. AT is the transpose of a
real matrix A. A(i) denotes the ith row of A. The matrix inequal-
ity A > B(A ≥ B) means that A − B is positive (semi-) definite.
λmax(P) (λmin(P)) denotes the maximum (minimum) eigenvalue
of a real symmetric matrix P . A block diagonal matrix with
sub-matrices X1, X2, . . . , Xn in its diagonal will be denoted by
diag{X1, X2, . . . , Xn}. I and 0 denote the identity matrix and zero
matrix with appropriate dimensions, respectively. To reduce clut-
ter, off-diagonal entries in symmetric matrices are occasionally re-
placed by ‘∗’.

2. Problem statement

Consider the following n-dimensional SISO nonlinear system
with actuator saturation

y(n) = f (y, ẏ, . . . , y(n−1))+ bsat(u) (1)

2 Han’s original papers on ADRC aremainly appeared in Chinese in 1980s–1990s.
The essentials of ADRC are summed up in English in Han (2009).

where y ∈ R is the plant output, f (y, ẏ, . . . , y(n−1)), or simply
denoted as f , is aC1-function that represents the possibly unknown
nonlinear dynamics of the system, b is a given constant, u ∈ R
is the control input, sat(·) is the saturation function defined as
sat(u) = sign(u)min{|u|, 1}. Here, we have assumed the unity
saturation level. Nonunity saturation levels canbe readily absorbed
into the constant b. In addition, we assume f (0) = 0 henceforth.

Let f = xn+1 be an extended state of the system and assume
h = ḟ . Then, system (1) can be written as the following equivalent
form:

ẋ1 = x2,
...
ẋn−1 = xn,
ẋn = xn+1 + bsat(u),
ẋn+1 = h,
y = x1

(2)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state of the system. An ESO
is correspondingly designed for (2),

˙̂x1 = x̂2 + εn−1g1


x1 − x̂1
εn


,

˙̂x2 = x̂3 + εn−2g2


x1 − x̂1
εn


,

...

˙̂xn = x̂n+1 + gn


x1 − x̂1
εn


+ bsat(u),

˙̂xn+1 = ε−1gn+1


x1 − x̂1
εn


(3)

where

x̂T, x̂n+1

T
=

x̂1, . . . , x̂n, x̂n+1

T
∈ Rn+1 is the ESO state, ε

is a small positive constant, and gi, i = 1, 2, . . . , n + 1, are some
nonlinear or linear functions. The above is a special form of the
general ESO proposed in Han (1995), and was also considered in
Guo and Zhao (2011, 2013). We anticipate that x̂i → xi as ε → 0
and t → ∞ for all i = 1, 2, . . . , n + 1. Then, by using the output
of the ESO, the control law is given as

u =
1
b


ϕ(x̂)− x̂n+1


(4)

where ϕ(·) is some nonlinear or linear function to be decided.
Substitution of (4) into (1) yields

y(n) = f + bsat

1
b


ϕ(x̂)− x̂n+1


. (5)

In the absence of actuator saturation, the equation above becomes

y(n) = (f − x̂n+1)+ ϕ(x̂). (6)
It can be observed that in this case the possibly unknown dynamics
f is asymptotically on-line canceled out by the term −

1
b x̂n+1 in

the control action, and as a consequence, the closed-loop system is
reduced to a linear one that incorporates with the estimated state
feedback ϕ(x̂). The estimated state feedback ϕ(x̂) is designed to
guarantee the stability of the closed-loop system and to render a
highly desirable performancewhen saturation is not accounted for
at the plant’s input.

Due to the actuator saturation, the actual control signal to
be injected into the system is a saturated one, sat(u), instead
of u, namely, the states of the controller may achieve different
values from those in the absence of saturation. Thus performance
deterioration and even instability may happen. In particular, in
ADRC, the nonlinear dynamics cannot be accurately compensated,
and consequently, the desired response is no longer guaranteed.
The goal of this paper is then to provide a solution to the
stabilization problem of the saturated nonlinear system (1) by
using the ESO-based control law (4).
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