
Automatica 55 (2015) 125–131

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Observability criteria for impulsive control systems with applications
to biomedical engineering processes✩

Pablo S. Rivadeneira a,b, Claude H. Moog a

a L’UNAM, IRCCyN, UMR-CNRS 6597, 1 Rue de la Noë - 44321, Nantes Cedex 03, France
b ‘‘Grupo de Sistemas No Lineales’’, INTEC-Facultad de Ingeniería Química (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina

a r t i c l e i n f o

Article history:
Received 7 October 2014
Received in revised form
6 February 2015
Accepted 16 February 2015

Keywords:
Impulsive control systems
Nonlinear systems
Observability
Diabetes mellitus Type I
HIV dynamics

a b s t r a c t

One of the fundamental properties of the impulsive systems is analyzed: observability. Algebraic criteria
for testing this property are obtained for the nonlinear case, considering continuous and discrete outputs.
For this class of systems, observability is explored not only through time derivatives of the output, but
also considering few discrete measurements at different time-instants. In this context, it is shown that
nonlinear impulsive control systems can be strongly observable or observable over a finite time interval.
A new rank condition based on the structure of the impulses is found to characterize observability of
linear impulsive systems. It generalizes the celebrated Kalman criterion, for both kind of outputs, discrete
and continuous. Finally, these results are tested and illustrated both on academic examples and on two
impulsive dynamical models from biomedical engineering science.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive control systems (ICS) are encountered in various ar-
eas as biology, health, robotics and others. For instance, a dia-
betic type I patient model will be shortly considered herein, for
which new specific mathematical tools are needed for analysis,
observation and control. Glycemia regulation is performed in real
life by appropriate insulin injections and eventually compensatory
snacks, to maintain glucose levels within the predefined target
range. These inputs can be approximated as impulseswhenever in-
sulin bolus is injected, and are adjusted based on discrete glycemia
measurements from blood samples taken at various times during
the day (Huang, Li, Song, & Guo, 2012). The intake of ‘meals’ will af-
fect the level of glucose of the patient, and therefore is considered
as an impulse disturbance. In this context, ICS seems the appropri-
ate tool to analyze its dynamics.

Another interesting example of ICS is themodel of the dynamics
of the human immunodeficiency virus (HIV), initially described in
Perelson, Kirschner, and Boer (1993). The intake of drugs once or
twice a day can be interpreted as an impulse input (Bellman, 1971),
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with a fixed time interval. Besides, the measurement of its outputs
are far from being continuous since blood samples are taken at
most every three or six months. In this framework, ICS is a more
pragmatic point of view. The accessibility of this ICS was explored
in Rivadeneira and Moog (2012).

More generally, impulsive control systems define a class of
systems whose state trajectories are piecewise continuous, with
discontinuities of the first kind or ‘jumps’ at some discrete time in-
stants. The dynamics is modeled by algebraic discrete equations or
by introducing impulses into the differential equations.

Observability in linear ICS has been investigated in Guan, Qian,
and Yu (2002), Medina and Lawrence (2008), Shi and Xie (2012)
and Xie and Wang (2005). The definition used therein establishes
that observability depends on measurements of the output on a
finite-time interval [0, tf ]. When a continuous output is consid-
ered, the most popular tool remains a Kalman type observability
matrix O (Guan et al., 2002; Xie &Wang, 2005; Zhao & Sun, 2009),
but with a very restrictive assumption over the class of consid-
ered impulsive systems. Discontinuities in the state of the form
x(τ+

k ) = AIx(τk) are allowed, where AI defines a diagonal matrix. A
different class of impulsive control systems is considered in Med-
ina and Lawrence (2009), for which the states evolve in continuous
form but the output is available for measurement at discrete times
only. Suitable criteria based on geometric properties of the invari-
ant observable space and the observability Gramian were worked
out for this case.
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In this paper and for the first-time ever, observability is inves-
tigated in nonlinear ICS. The dual property of accessibility of non-
linear ICS was characterized in Rivadeneira and Moog (2012) and
the basis of the impulsive exact linearization was stated.

The results of the paper are in threefold: (i) The sufficient and
necessary conditions are provided to test observability for lin-
ear systems with discrete time outputs. This condition has to be
viewed as an extended Kalman criterion for observability. Also, the
equivalence between the algebraic condition and the observability
Gramian is detailed. (ii) The nonlinear casewith continuous output
and discrete measurements is tackled. Two definitions of observ-
ability are introduced with their respective criterion. Strong ob-
servability and observability over a finite time interval, are more
natural for the latter nonlinear ICS. (iii) Observability is tested on
two important models borrowed from biomedical engineering sci-
ence: HIV and diabetic type I patient models. A brief description of
the glycemia dynamical model is given for diabetic patients in the
framework of ICS.

2. Preliminaries

A plant is an impulsive control system when there is a set of
time instants T = {τk} , τk ∈ R, τk < τk+1 < ∞, and a set of inputs
Uk ∈ Rn, k = 1, 2, . . . , such that the state x ∈ Rn is discontinuous
at each τk according to x(τ+

k ) = fI(x(τk)) + U(k, x). Note that the
control instants are not necessarily equidistant, the control U(k, x)
yields a discontinuity of x at instant τk, the function fI(x) defines
discontinuities of the first kind (or ‘natural jumps’) in the state
variable, and the system is left-continuous, i.e. x(τ−

k ) = x(τk).
The class of dynamic systems of interest basically consists

of objects defined by a set of impulsive first-order differential
equations of the form (Rivadeneira & Moog, 2012; Yang, 2001)

ẋ(t) = f (x), x(t0) = x(t+0 ) = x0, t ≠ τk,

x(τ+

k ) = fI(x(τk)) + g(x(τk))u(τk), t = τk, k ∈ N,
yc(t) = hc(x(t)), or
yd[k] = hd(x(τk)), k ∈ N

(1)

where the state x ∈ X ∈ Rn, the input u ∈ Rm, yc ∈ Q ∈ Rq is a
continuous output, yd ∈ Rq is a set of discrete measurements, and
the independent variable t ∈ R denotes the time. The functions
f (x), fI(x) ∈ Rn and g(x) ∈ Rn×m are analytical vector fields, and
the spaces X and Q are analytic manifolds.

Note that the first two equations of system (1) can be written
alternatively as (Rivadeneira & Moog, 2012)

ẋ(t) = f (x(t)) + (f1(x(t)) + g(x(t))u(t))δ(t − τk),

x(t0) = x0, (2)

where f1 = fI(x)−x, and δ is the impulse applied at times τk, k ∈ N.
For the special case where fI(x) = x, then (2) reduces to

ẋ(t) = f (x(t)) + g(x(t))u(t)δ(t − τk), (3)
x(t0) = x0. (4)

Actually, the nonlinear ICS (1) is an autonomous system in
the intervals ]τk−1, τk[, k = {1, 2, . . .}. For simplicity, assume
that t0 = 0, there is no impulse applied to the system in the
interval [0, τ1[, and u(τi) = ui. Let Ψ (t, 0, x0) be a solution of the
autonomous system1 of the first equation in (1) for t ∈ [0, τ1[, i.e.
x(t) = Ψ (t, 0, x0), t ∈ [0, τ1[. At t = τ1,

x(τ+

1 ) = fI(x(τ1)) + g(x(τ1))u1 (5)

= fI (Ψ (τ1, 0, x0)) + g (Ψ (τ1, 0, x0)) u1. (6)

1 The existence and uniqueness of the solution Ψ (·) is assumed. However, this
is still an active field of research. See Ref. Lakshmikantham, Bainov, and Simeonov
(1989) for an introduction.

Now, for t ∈ [τ1, τ2[, where the first impulse has been already
applied to the system, the state trajectory x(t) is

x(t) = Ψ (t, τ1, x(τ+

1 ))

= Ψ (t, τ1, fI (Ψ (τ1, 0, x0)) + g (Ψ (t, 0, x0)) u1) .

In general, the state x(t) in the interval [τk−1, τk[ follows the
recursive equation

x(t) = Ψ (t, τk−1, x(τ+

k−1)), t ∈ [τk−1, τk[, (7)

x(τ+

k ) = fI (x(τk)) + g(x(τk))uk, t = τk, k ∈ N

where τ0 = 0, x(τ+

0 ) = x0, and k − 1 impulses have been applied
to the system. Note that x(·), and g(·) depend on x0 and ui.

If f (x) = Ax, g(x) = B, and fI(x) = AIx, this system is a linear
ICS and can be expressed as (Medina & Lawrence, 2008)

ẋ(t) = Ax(t), x(0+) = x0, t ≠ τk,

x(τ+

k ) = AIx(τk) + Bu(τk), k ∈ N,
yc(t) = Ccx(t), or
yd(t) = Cdx(t),

(8)

where A, B, AI , and Cc (or Cd) have appropriate dimensions.
The state response for this class of systems can be generated

explicitly as follows. Let us denote the final time as tf = τk+1,
the set of time instants as T = {τ1, . . . τk} such that ∆i is equal
to ∆i = τi+1 − τi, and verifies that ∆0 = τ1, and ∆k = tf − τk. The
state transition matrix of (8) is calculated recursively using (7) and
results in Φ(tf , 0) = eA∆kAIeA∆k−1 · · · AIeA∆1AIeA∆0 .

The state transition matrix is invertible for all t ∈ [0, tf ] if only
if thematrix AI is invertible, and in this case,Φ(0, tf ) = Φ−1(tf , 0)
(seeMedina& Lawrence, 2008 formore details). The state response
of system (8) on [0, t] with k impulses applied to the system is
x(t) = Φ(t, 0)x0 +

k
j=1 Φ(t, τj)Buj. Note that if B = 0 and

AI = I , the state transition matrix for LTI systems is recovered,
that is, Φ(t, t0) = eAt and the state response is just x(t) = eAtx0.
Now, if B ≠ 0 but AI = I , the state response equation becomes
x(t) = eAt


x0 +

k
j=1 e

−AτjBuj


, which agreeswith results in Yang

(2001).

3. Observability for nonlinear impulsive systems

3.1. Strong observability

In standard nonlinear control systems (where the impulses
are not involved), this property has been extensively developed,
not only considering continuous outputs (Conte, Moog, & Perdon,
2007), but also discrete ones (Califano, Monaco, & Normand-Cyrot,
2003; Moral & Grizzle, 1995). A standard nonlinear control system
with continuous output is called strongly observable, if the state
can be deduced from the knowledge of the output and its time
derivatives. For nonlinear ICS, the same notion will be maintained
even if impulses are taken into account in the dynamics.

Definition 1. System (1) is said to be strongly observable at point
t = 0, if there exist an integer n, and locally a function ϕ such that
x(0) = ϕ


yc(0), ẏc(0), . . . , y

(n−1)
c (0)


.

Theorem 1. System (1) is strongly observable at point t = 0, if and
only if
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