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a b s t r a c t

This paper is concerned with the observer design problem for a class of multi-input–multi-output
nonlinear systems with the unmodeled dynamics, unknown parameters and external disturbance. A
dynamic signal, which can dominate the unmodeled dynamics, is firstly constructed. Then, two types
of observer schemes, that is, adaptive observer and robust observer, are respectively proposed. The
observation error in the two schemes can be made arbitrarily small by choosing the appropriate design
parameters. An illustrative example is provided to demonstrate the validity of the proposed design
methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The unmodeled dynamics often appears in many control sys-
tems due to the modeling errors or the modeling simplifica-
tions. The stability analysis and feedback control problems for
linear or nonlinear systemswith the unmodeled dynamics have at-
tracted the attention of many researchers (see, e.g. Chen & Huang,
2010, Ikhouane & Krstic, 1998, Jiang & Praly, 1998, and references
therein).

On the other hand, the problem of state observer design has
been well studied in the past decades. The observer schemes have
been developed for all kinds of nonlinear systems, such as time-
delay systems (Ghanes, De Leon, & Barbot, 2013; Ibrir, 2009; Wu,
2009), Lipschitz nonlinear systems (Ekramian, Sheikholeslam,Hos-
seinnia, & Yazdanpanahd, 2013) and other class of nonlinear sys-
tems (Boizot, Busvelle, & Gauthier, 2010; Churilov, Medvedev, &
Shepeljavyi, 2012; Farza, M’Saad, Maatoug, & Kamoun, 2010; Grip,
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Saberi, & Johansen, 2012; Hammouri, Bornard, & Busawon, 2010;
Marino, Santosuosso, & Tomei, 2001; Menard, Moulay, & Perru-
quetti, 2010; Stamnes, Aamo, & Kaasa, 2011). However, few ob-
server results have been reported for nonlinear systems with the
unmodeled dynamics. In the presence of the unmodeled dynam-
ics, the observer design problem becomes more challenging. In
a recent paper by Liu (2009), robust adaptive observers were
designed for a class of nonlinear systems with the unmodeled dy-
namics. It has been shown that the proposed observers can guar-
antee the boundedness of the estimation error and the adaptive
gain.

In this paper, we address the observer design problem for a
class of nonlinear systems with unmodeled dynamics, unknown
system parameters and unknown time-varying disturbance. Since
a parameter in the assumption for the unmodeled dynamics is not
employed in the newly defined dynamic signal, the developed ob-
server does not require it to be known. Moreover, in the bounding
function of the uncertain nonlinear function, the coupling terms
related to the unmodeled dynamics and the system states are fully
considered. The first technical result presented in this paper al-
lows us to show the dominating property of the introduced dy-
namic signal with respect to the unmodeled dynamics. Then, two
types of observer schemes are proposed. The first scheme is adap-
tive observer, which has the same spirit as in Liu (2009). In the sec-
ond scheme, adaptive methodology is not employed, which has a
great significance for reducing the system complexity and saving
the cost for observer implementation.

http://dx.doi.org/10.1016/j.automatica.2014.10.068
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.10.068
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.10.068&domain=pdf
mailto:qufuzzq@126.com
mailto:syxu@njust.edu.cn
http://dx.doi.org/10.1016/j.automatica.2014.10.068


Z. Zhang, S. Xu / Automatica 51 (2015) 80–84 81

2. Problem formulation and preliminaries

We consider a class of uncertain nonlinear systems with the
unmodeled dynamics in the form of
ẋ = Ax + Bf (x, u, ω, θ, d) + g(y, u),
y = Cx, (1)
where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp

is themeasured output,ω ∈ Rr is the unmodeled dynamics, θ ∈ Rq

is the unknown parameter vector, d ∈ Rk is the unknown time-
varying disturbance, f (x, u, ω, θ, d) ∈ Rl represents the unknown
nonlinear perturbation, g(y, u) is the known nonlinear function,
and A, B, C are the known constant matrixes of appropriate
dimensions. The unmodeled dynamics is described by
ω̇ = q(y, ω), (2)
where q(y, ω) is the unknown nonlinear function.

Our objective is to design observer with the output y(t) and
input u(t) to estimate the system states. We make the following
assumptions.

Assumption 1. The pair {A, C} given in (1) is detectable. That is,
there exists a matrix K ∈ Rn×p such that the matrix Am = A − KC
is Hurwitz.

Assumption 2. There exist positive definite matrixes P,Q such
that AT

mP + PAm = −Q , PB = CT .

Assumption 3. For the uncertain function f (·), there exist known
nonnegative functions ξi(·), i = 1, 2, 3, 4, known class K∞ func-
tions αi(·), i = 1, 2, 3, 4, and unknown constants ci, i = 1,
2, . . . , 8, such that the following inequality holds:∥f (x, u, ω, θ, d)∥
≤ c1 + c2∥x∥ + c3ξ1(y, u) + c4α1(∥ω∥) + c5∥x∥ξ2(y, u) +

c6∥x∥α2(∥ω∥)+c7ξ3(y, u)α3(∥ω∥)+c8∥x∥ξ4(y, u)α4(∥ω∥), where
∥ · ∥ denotes the Euclidean norm of a vector.

Assumption 4. For the unmodeled dynamics (2), there exists a
Lyapunov function Vω(ω) such that the following conditions are
satisfied: Vω(ω) ≥ α(∥ω∥), ∂Vω(ω)

∂ω
q(y, ω) ≤ −γ1Vω(ω) + ρ(y) +

γ2, where α(·) is a known function of class K∞, ρ(·) is a known
nonnegative function, γ1 > 0, γ2 ≥ 0, are constants, and γ2 is not
required to be known.

Then, in order to handle the unmodeled dynamics ω(t), we
introduce a new dynamic signal δ(t), which is generated by

δ̇ = −γ0δ + ρ(y), δ(t0) = δ0, (3)
where γ0 is a design constant satisfying 0 < γ0 < γ1, and δ0
represents the initial condition of δ(t) and is nonnegative design
constant.

Lemma 1. The dynamic signal δ(t) has the following properties:
(i) δ(t) ≥ 0, ∀t ≥ t0 ≥ 0; (ii) Vω(ω(t)) ≤ δ(t) +D, ∀t ≥ t0 ≥ 0,
where D = Vω(ω0) + γ2/γ1, ω0 is the initial condition of ω(t) in (2),
i.e. ω0 = ω(t0).
Proof. Since ρ(·) is nonnegative function and δ0 is nonnegative
constant, Property (i) holds. We define U(t) = Vω(ω(t)). Thus, we
have U(t0) = Vω(ω0) ≥ 0. From (2), (3) and Assumption 4, the
derivative of U(t) is given by U̇(t) =

∂Vω

∂ω
q(y, ω) ≤ −γ1U(t) +

δ̇ + γ0δ + γ2, ∀t ≥ t0 ≥ 0, which together with the formula of
integration by parts leads to

U(t) ≤ e−γ1(t−t0)U(t0)

+

 t

t0
e−γ1(t−τ)(δ̇(τ ) + γ0δ(τ ) + γ2)dτ

= e−γ1(t−t0)U(t0) + δ(t) + γ2/γ1 − e−γ1(t−t0)δ0

− (γ1 − γ0)

 t

t0
δ(τ )e−γ1(t−τ)dτ −

γ2

γ1
e−γ1(t−t0).

Using Property (i), δ0 ≥ 0 and γ1 > γ0, we get U(t) ≤ δ(t) +

U(t0) + γ2/γ1, that is, (ii) holds.

3. Observer design and analysis

3.1. Scheme I: adaptive observer

We propose the following observer with adaptive gain:

˙̂x = Ax̂ + g(y, u) − Kē − β11(t)β12(t)Bē, (4)

where x̂ is the state estimate, e = x̂−x is the observation error, ē =

Cx̂−y = Ce is the output error,β11(t) = 1+k1+∥x̂∥2(1+ξ 2
2 (y, u)+

ξ 2
4 (y, u) + ξ 2

4 (y, u)α2
4(2α

−1(2δ))) + ξ 2
1 (y, u) + k2ξ 2

2 (y, u) +

ξ 2
3 (y, u) + k5ξ 2

4 (y, u) + α2
1(2α

−1(2δ)) + (1 + k3)α2
2(2α

−1(2δ))
+ ξ 2

3 (y, u)α2
3(2α

−1(2δ)) + k4ξ 2
4 (y, u)α2

4(2α
−1(2δ)), β12(t) is

adaptive gain, which is updated by

β̇12(t) = γ (∥ē∥2β11(t) − σβ12(t)), (5)

ki, i = 1, 2, 3, 4, 5, γ , σ , are positive design constants, ki, i =

1, 2, 3, 4, 5, are chosen to be sufficiently large such that µ :=

(λmin(Q ) −
5

i=1 1/(2ki))/(2λmax(P)) > 0 for any given P,Q
satisfying Assumption 2, and λmin(·), λmax(·) denote the minimum
andmaximumeigenvalues of amatrix, respectively. Then, we have
the following theorem.

Theorem 1. The system (3)–(5) is an adaptive observer for the
system (1). For any given initial condition e(t0) = x̂(t0) − x(t0),
the observation error e(t) exponentially converges to a neighborhood
of the origin, which can be made arbitrarily small by choosing the
appropriate design parameters ki, i = 1, 2, 3, 4, 5, γ , σ .

Proof. From (1), (4) and Assumption 1, the dynamics of e(t) is
governed by

ė = Ame − Bf (x, u, ω, θ, d) − β11(t)β12(t)Bē. (6)

Define the Lyapunov function as V1 = 1/2eTPe+1/2γ −1(β12(t)−

k0)2, where k0 is a constant satisfying k0 ≥ max{c̄22 , c
2
5 , c

2
6 ,

c28 , c
2
8α

2
4(2α

−1(2D))}, and c̄2 is defined below. From Assumption 2,
(5) and (6), it can be obtained that

V̇1 = −1/2eTQe − ēT f − β11(t)β12(t)∥ē∥2

+ γ −1(β12(t) − k0)β̇12(t). (7)

From Assumption 3, we have

|ēT f | ≤ ∥ē∥[c1 + c2∥x∥ + c3ξ1(y, u) + c4α1(∥ω∥) + c5
· ∥x∥ξ2(y, u) + c6∥x∥α2(∥ω∥) + c7ξ3(y, u)
· α3(∥ω∥) + c8∥x∥ξ4(y, u)α4(∥ω∥)]. (8)

From Assumption 4 and Lemma 1, we get α(∥ω∥) ≤ δ(t) +

D, ∥ω∥ ≤ α−1(2δ(t)) + α−1(2D), αi(∥ω∥) ≤ αi(2α−1(2δ(t))) +

αi(2α−1(2D)), i = 1, 2, 3, 4, which togetherwith ∥x∥ ≤ ∥x̂∥+∥e∥
results in

|ēT f | ≤ ∥ē∥[c̄1 + c̄2∥x̂∥ + c3ξ1(y, u) + c4α1(2α−1(2δ))
+ c5∥x̂∥ξ2(y, u) + c6∥x̂∥α2(2α−1(2δ))
+ c7ξ3(y, u)α3(2α−1(2δ)) + c7α3(2α−1(2D))

· ξ3(y, u) + c8ξ4(y, u)∥x̂∥α4(2α−1(2δ))
+ c8α4(2α−1(2D))ξ4(y, u)∥x̂∥] + c̄2∥ē∥ · ∥e∥
+ c5∥ē∥ · ∥e∥ξ2(y, u) + c6∥ē∥ · ∥e∥α2(2α−1(2δ))
+ c8∥ē∥ξ4(y, u)∥e∥α4(2α−1(2δ))

+ c8α4(2α−1(2D))∥ē∥ξ4(y, u)∥e∥, (9)
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