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a b s t r a c t

State-of-the-art formulations of optimal experiment design problems are typically based on a design
criterion which allows us to optimize a scalar map of the predicted variance–covariance matrix of the
parameter estimate. Famous examples for such scalar objectives are the A-criterion, the E-criterion,
or the D-criterion, which aim at minimizing the trace, maximum eigenvalue, or determinant of the
variance–covariance matrix. In this paper, we propose a different way of deriving an economic design
criterion for the optimal experiment design. Here, the corresponding analysis is based on the assumption
that our ultimate goal is to solve an optimization problem with a given economic objective that depends
on uncertain parameters, which have to be estimated by the experiment. We illustrate the approach by
studying a fedbatch bioreactor.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear differential equation models are nowadays indis-
pensable tools for the analysis, design, operation and optimiza-
tion of dynamic processes. For an accuratemodeling, it is necessary
to collect experimental data by performing experiments. To limit
this experimental burden optimal experiment design (OED) meth-
ods have been developed. The idea is to design experiments which
reveal the highest amount of information. The field of OED (for
parameter estimation) has been founded by Fisher (1935) and
has been extended to static linear and nonlinear models in Box
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and Lucas (1959) and Kiefer and Wolfowitz (1959). The transition
to dynamic systems has been accomplished in Gevers and Ljung
(1986) and Mehra (1974) for the linear and in Espie and Machi-
etto (1989) for the nonlinear case. For a more detailed overview,
the reader is referred to Franceschini and Macchietto (2008) and
Pukelsheim (1993). With respect to numerical implementations,
state-of-the-art methods are described in Balsa-Canto, Alonso, and
Banga (2010), Hoang, Barz, Merchan, Biegler, and Arellano-Garcia
(2013), Körkel, Kostina, Bock, and Schlöder (2004), Schenkendorf,
Kremling, and Mangold (2009) and Telen et al. (2013). In practice,
model-based process optimization is meant to improve the perfor-
mance of the process without spending (too) much effort on per-
forming experiments.

This paper follows the philosophy to design experiments with
respect to the intended model application, a well-established
concept for linear systems (Gevers & Ljung, 1986), in particular, in
the context of joint design for control and identification (Gevers,
1993; Hjalmarsson, 2005). However, in OED for nonlinear dynamic
processes these concepts are less established, and thuswe propose
in this paper a way to formulate a design criterion that leads to
a new concept named the economic optimal experiment design for
nonlinear dynamic systems. We assume that our ultimate goal
is to solve an optimal control problem with economic objective
that depends on an unknown parameter vector p. If we solve this
optimal control problem based on an estimate of the parameters p
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in place of their unknown exact values, we will find a sub-optimal
control input. Now, the aim of economic OED is to reduce the
expected optimality gap that is associatedwith solving the optimal
control problem based on an estimate for p. The contribution
is that we formulate and approximately solve such economic
OED problems, yielding an optimally weighted A-criterion that is
invariant under affine parameter transformations.

We start in Section 2 with a motivating example and briefly
review the idea of OED in Section 3. Our contribution is presented
in Sections 4 and 5, where we discuss how to formulate economic
OED problems. Section 6 presents a case study and Section 7 the
conclusions.

2. A motivating example

We consider a dynamic model for a continuously stirred tank
reactor (CSTR) inwhich a Van de Vusse reaction takes place (Bonilla,

Diehl, Logist, DeMoor, &Van Impe, 2010):A
k1
→ B

k2
→ C and 2A

k3
→D.

Since the substances C and D are unwanted and do not react
further, our dynamic model is given by

ċA =
V̇
VR

(cA0 − cA)− k1cA − k3c2A (1)

ċB = −
V̇
VR

cB + k1cA − k2cB, (2)

where cA and cB are the concentrations of the substances A and B.
The feed inflow has a known concentration cA0 = 5.1 mol

L and its
flow rate V̇ can be controlled. The reactor capacity VR = 10 L is
given, but the reaction rates k1 = k2 and k3 are unknown, i.e., we
have two free uncertain parameters. For simplicity of presentation,
we assume in this section that we want to operate the CSTR at the
steady state optimizing the product concentration cB:

max
cA,cB,V̇

cB s.t.


0 =

V̇
VR

(cA0 − cA)− k1cA − k3c2A

0 = −
V̇
VR

cB + k1cA − k1cB.

The above expression for cB can be maximized explicitly finding
that the optimal flow rate is given by2 V̇ ∗ = k1VR. This explicit
expression for the optimal flow rate V̇ ∗ reveals that the optimal
input depends on the unknown parameter k1 only, while the
accuracy of our estimates for the other unknown parameter k3
is completely irrelevant for maximizing the steady state product
concentration cB. What would we have done if we had not
have found this explicit expression for V̇ ∗? Clearly, if we do not
employ analysis tools for getting an insight about the parametric
dependences of a process, we might spend a lot of effort or money
for measuring irrelevant parameters, in this example k3, as we
might not realize in advance that the values of these parameters
are irrelevant for computing an optimal operation point. Thus, for
a more involved process, we need advanced numerical tools to
analyze which parameter values are more relevant than others in
order to design an optimal experiment. The aim of this paper is to
develop such numerical tools.

2 In order to derive the expression for the optimal flow rate, it is helpful to employ
the explicit relation

cB = −
k1
2k3
+


k1
2k3

2

+
k21cA0VRV̇

k3(k1VR + V̇ )2
.

3. Optimal experiment design

We are interested in a maximum likelihood parameter estima-
tion problem of the form

min
x,p

1
2
∥M(x, p)− η∥2

Σ−1
+

1
2

p− p̂
2

Σ
−1
0

s.t. G(x, u, p) = 0.
(3)

Here, p ∈ Rnp is the parameter whichwewant to estimate, u ∈ Rnz

is a given control input which can be adjusted for taking the mea-
surements, and η ∈ RnM is the measurement value. The measure-
ment functionM and the right-hand side functionG are assumed to
be continuously differentiable. The function G can for example de-
note a steady state equation, where xwould denote a single steady
state, but it could also arise from discretizing a dynamic system
(Bock& Plitt, 1984). Finally,Σ ∈ SnM

+ andΣ0 ∈ Snp
+ denote the vari-

ance–covariance matrix of the measurement error and the given
initial parameter estimate p̂, respectively.

The optimal experiment design aims at minimizing a suitable
scalar design criterion Φ : Snp

+ → R of the approximate vari-
ance–covariance matrix V (u, p̂) := F (u, p̂)−1 assuming that the
Fisher information matrix, given by

F (u, p̂) := Σ−10 +Mp(xs(u, p̂), u, p̂)TΣ−1Mp(xs(u, p̂), u, p̂),

is invertible. Here, p̂ ∈ Rnp is the currently best available estimate
for the parameter, xs(u, p̂) denotes the solution of the implicit state
equation

G(xs(u, p̂), u, p̂) = 0,

which is assumed to be unique, and

Mp(xs(u, p̂), u, p̂) := −
∂M
∂x


∂G
∂x

−1
∂G
∂p
+

∂M
∂p


(xs(u,p̂),u,p̂)

.

In this context, the Jacobian matrix, given by

∂G(xs(u, p̂), u, p̂)
∂x

,

can be assumed to be invertible for all feasible inputs u such that
the above expression for Mp is well-defined. The optimal experi-
ment design problem of our interest can now be written as

min
u

Φ

V (u, p̂)


s.t. H(u) ≤ 0.

Here, H is a given constraint function.

4. Second order expansion of optimality loss

Our ultimate goal is to solve the ‘‘economic’’ optimization prob-
lem

min
x,u

F(x, u, preal) s.t.

G(x, u, preal) = 0
H(u) ≤ 0, (4)

which depends on an unknown parameter preal ∈ Rnp . The func-
tions F , G, and H are assumed to be twice continuously differen-
tiable and the state xs(u, preal) of the real dynamic process is for
any given u assumed to be determined uniquely by the equation

G(xs(u, preal), u, preal) = 0.

Similar to the non-degeneracy condition from the previous section,
the matrix
∂G(xs(u, preal), u, preal)

∂x
is assumed to be invertible for all feasible inputs u. Since preal is un-
known, a reasonable practical strategy is to first design an experi-
ment and to collectmeasurements in order to compute an estimate
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