
Automatica ( ) –

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

State estimation and sliding mode control for semi-Markovian jump
systems with mismatched uncertainties✩

Fanbiao Li a,b, Ligang Wu a,1, Peng Shi b,c, Cheng-Chew Lim b

a Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin, 150001, China
b School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005, Australia
c College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia

a r t i c l e i n f o

Article history:
Received 16 March 2013
Received in revised form
15 July 2014
Accepted 20 August 2014
Available online xxxx

Keywords:
Sliding mode control
Observer
Semi-Markovian jump system
Mismatched uncertainties

a b s t r a c t

This paper is concernedwith the state estimation and slidingmode control problems for phase-type semi-
Markovian jump systems. Using a supplementary variable technique and a plant transformation, a finite
phase-type semi-Markov process has been transformed into a finite Markov chain, which is called its
associated Markov chain. As a result, phase-type semi-Markovian jump systems can be equivalently ex-
pressed as its associatedMarkovian jump systems. A sliding surface is then constructed and a slidingmode
controller is synthesized to ensure that the associated Markovian jump systems satisfy the reaching con-
dition. Moreover, an observer-based sliding mode control problem is investigated. Sufficient conditions
are established for the solvability of the desired observer. Two numerical examples are presented to show
the effectiveness of the proposed design techniques.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Markovian jump systems (MJS) are a special class of stochas-
tic dynamic systems which are popular for modeling the random
abrupt variations in their structures, since in practice many dy-
namical systems may subject to frequent unpredictable structural
changes, such as random failures, repairs of sudden environment
disturbances and abrupt variation of the operating point. Research
into this class of systems and their applications have spanned sev-
eral decades. For some representative work on this general topic,
we refer to Costa and De Oliveira (2012), Gao, Fei, Lam, and Du
(2011), Ji and Chizeck (1990), Mahmoud (2004), Shi, Boukas, and
Agarwal (1999a,b), Shi and Yu (2009) and the references therein.
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However, MJS have many limitations in applications, since the
jump time of a Markov chain is, in general, exponentially dis-
tributed, and the results obtained for MJS are intrinsically conser-
vative due to constant transition rates (Huang & Shi, 2013). Unlike
the MJS, semi-Markovian jump systems (S-MJS) are characterized
by a fixedmatrix of transition probabilities and amatrix of sojourn
time probability density functions (Hou, Luo, Shi, & Nguang, 2006).
Due to their relaxed conditions on the probability distributions,
S-MJS have much broader applications than the conventional MJS.
Indeed, it is expected that most of the modeling, analysis and
design results for MJS could be regarded as special cases of S-
MJS. Hence, this area is significant not only in theory, but also in
practice.

Slidingmode control (SMC) is an effective control approach due
to its excellent advantage of strong robustness against model un-
certainties, parameter variations and external disturbances. It is
worthwhile tomention that the SMC strategy has been successfully
applied to a variety of practical systems such as robot manipula-
tors, aircraft navigation and control, and power system stabilizers.
Consequently, the SMC design problem has received increasing re-
search attention and there are a large number of significant results
in the literature (see, for example, Basin, Ferreira, & Fridman, 2007;
Basin&Rodriguez-Ramirez, 2011, 2012; Barambones, Alkorta, & de
Durana, 2013;Niu, Ho, & Lam, 2005;Niu, Ho, &Wang, 2007; Soltan-
pour, Zolfaghari, Soltani, & Khooban, 2013; Wu & Shi, 2010; Wu &
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Zheng, 2009, and the references therein). Furthermore, the system
states are not always available. Thus, sliding mode observer tech-
nique has been developed to deal with the state estimation prob-
lems for linear or nonlinear uncertain systems. Nevertheless, there
are still a few results related to state estimation and SMC problems
for S-MJS.

Motivated by the above discussion, in this paper, we investigate
the state estimation and sliding mode control problems for semi-
Markovian jump systems. This paper addresses three open ques-
tions: (1) how a phase-type semi-Markov process can be replaced
by a Markov chain, which is equivalent to transforming a phase-
type semi-Markovian jump system into its associated Markovian
jump system; (2) how to design the appropriate sliding surface
function to adjust the effect of the jumping phenomenon in the
plant; and (3) how to perform the reachability analysis for the
resulting sliding mode dynamics. Thus, sliding surface function
design and reachability analysis of the resulting sliding mode dy-
namics are themain issues to be addressed in this paper. Numerical
examples are given to illustrate the effectiveness of the proposed
control scheme.

Notations. The notations used throughout the paper are standard.
The superscripts ‘T ’ and ‘−1’ denote matrix transposition and ma-
trix inverse, respectively. Rn denotes the n-dimensional Euclidean
space. The notation X > 0 (> 0) means that matrix X is positive
definite (semi-definite); and λmin (X) denotes theminimumeigen-
value of the symmetric matrix X . The notation (Ω,F ,P ) repre-
sents the probability space, whereΩ is the sample space, F is the
σ -algebra of subsets of the sample space and P is the probability
measure on F . In addition, E {·} denotes the expectation opera-
tor. Symbol ∥·∥ stands for the Euclidean norm of a vector and its
induced norm of a matrix. We use diag{A1, . . . , An} to denote the
block-diagonalmatrixwith A1, . . . , An on the diagonal. In symmet-
ric block matrices, we use an asterisk ∗ to represent a term that is
induced by symmetry.

2. Phase-type semi-Markov processes and Markovization

Consider a class of stochastic systems in the probability space
(Ω,F ,P ) for t > 0

ẋ(t) =

Â(r̂t)+∆Â(r̂t , t)


x(t)+ B̂(r̂t)


u(t)+ ϕ(t)


,

y(t) = Ĉ(r̂t)x(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rp is the control input,
y(t) ∈ Rq is the system output, and ϕ(t) ∈ Rp is uncertainty
disturbance. Â(r̂t), B̂(r̂t) and Ĉ(r̂t) are matrix functions of the ran-
dom process {r̂t , t > 0}; and ∆Â(r̂t , t) is system uncertainty. Let
{r̂t , t > 0} be a continuous time stochastic process on the state
space {1, 2, . . . ,m + 1}, where the states 1, 2, . . . ,m are tran-
sient and the state m + 1 is absorbing. The infinitesimal genera-
tor is Q =


T T0

01×m 0


, where the matrix T = (Tij)m×m satisfies

Tii < 0, Tij > 0, i ≠ j; and T 0
=


T 0
1 T 0

2 · · · T 0
m

T is a
non-negative column vector such that Te + T 0

= 0, where e de-
notes an appropriately dimensioned column vector with all com-
ponents equal to one. The initial distribution vector is (a, am+1),
where a = (a1, a2, . . . , am) satisfies ae + am+1 = 1. In addition,
we have the following assumption.

Assumption 1. Assume that the absorbing state is reached with
probability one for a finite time.

Definition 1 (Neuts, 1975). A probability distribution is said to be
of phase-type if it is the absorption time distribution of a finite
Markov chain having an absorbing state and all the other states

transient. This distribution is defined by the pair (a, T ) and we say
that the pair (a, T ) is a representation of this distribution.

Definition 2 (Hou et al., 2006). Let E be a finite set. A stochastic
process r̂t on the state space E is called a phase-type semi-Markov
process, if the following conditions hold.

(i) The sample paths of r̂t are right-continuous functions and
have left-hand limits with probability one;

(ii) Denote the sth jump point of the process r̂t by τs, where 0 =

τ0 < τ1 < τ2 < · · · < τs < · · ·, and τs (s = 1, 2, 3, . . .) are
Markovian of the process r̂t ;

(iii) Fij(t) , P

τs+1 − τs 6 t| r̂τs = i, r̂τs+1 = j


= Fi(t), i, j ∈

E, t > 0 do not depend on j and s; and
(iv) Fi(t), i ∈ E is a phase-type distribution.

Remark 1. We considered the times between transitions are
phase-type (PH) distributions. It is worth noting that the PH dis-
tribution is a generalization of the exponential distribution while
still preserving much of its analytic tractability, and has been used
in a wide range of stochastic modeling applications such as reli-
ability theory, queueing theory and biostatistics. Furthermore, the
family of PH distribution is dense in all the families of distributions
on [0,+∞). So, for every probability distribution on [0,+∞), we
may choose a PH distribution to approximate the original distribu-
tion in any accuracy (Neuts, 1975).

Let (a(i), T (i)), i ∈ E denote them(i) order representation of Fi(t),
and E(i) be the corresponding all transient states set (the number
of the elements in E(i) is m(i)), where

a(i) ,

a(i)1 , a

(i)
2 , . . . , a

(i)
m(i)


,

T (i) ,

T (i)jk , j, k ∈ E(i)


.

Also, let

pij , Pr

r̂s+1 = j| r̂s = i


, i, j ∈ E,

P , (pij), i, j ∈ E

(a, T ) , (a(i), T (i)), i ∈ E.

It is easy to see that the probability distribution of r̂t can be
determined only by {P, (a, T )}. For every s(s = 1, 2, . . .), τs 6 t 6
τs+1, define

J(t) , the phase of Fr̂(t)(·) at time t − τs. (2)

Also, for any i ∈ E, define

T (i,0)j , −

m(i)
k=1

T (i)jk , j = 1, 2, . . . ,m(i), (3)

G ,

(i, k(i))| i ∈ E, k(i) = 1, 2, . . . ,m(i). (4)

Lemma 1 (Hou et al., 2006). Z(t) = (r̂t , J(t)) is a Markov chain
with state-space G. The infinitesimal generator of Z(t) given by Q =

(qµν), µ, ν ∈ G is determined only by the pair of (r̂t , J(t)) given by
{P, (a, T )} as follows:

q(i,k(i))(i,k(i)) = T (i)
k(i)k(i)

, (i, k(i)) ∈ G
q(i,k(i))(i,k̄(i)) = T (i)

k(i) k̄(i)
, k(i) ≠ k̄(i), (i, k(i)) ∈ G,

(i, k̄(i)) ∈ G
q(i,k(i))(j,k(j)) = pijT

(i,0)
k(i)

a(j)
k(j)
, i ≠ j, (i, k(i)) ∈ G,
(j, k(j)) ∈ G.

From (4), we obtain that G has N =


i∈E m
(i) elements, so the

state space of Z(t) has N elements. For convenience, we further
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