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A B S T R A C T

Actuator nonlinearities such as saturation and deadzone may be responsible for bad control performance, if their
presence is not correctly addressed in the design of the control system. This paper focuses on a plant showing
a non-symmetric deadzone and saturation of the control action. The authors implement and test two different
control strategies based on Model Predictive Control (MPC): the former relies on Hybrid MPC, the latter is based
on deadzone inversion and on standard MPC. The performances and the robustness of the two schemes are
evaluated with simulations and with experiments on a laboratory scale overhead travelling crane.

1. Introduction

The control of plants with actuators showing a nonlinear behaviour
(saturation, deadzone, hysteresis, backlash...) is one of the most com-
mon issues in the industrial framework. Mechanical actuators in fact
may not only show intrinsic nonlinear behaviour, but are also subject to
an unavoidable ageing process which alters their dynamic. This results
in a nonlinear and uncertain behaviour and consequently in poor control
performances. This work focuses on a plant with DC motors whose
dynamic is characterised by the presence of a non-symmetric deadzone
and a saturation of the control signal. According to the literature, the
problem can be faced in different ways, also relying on approaches
which were developed for different types of nonlinearities. Among these
techniques adaptive control (Recker, Kokotovic, Rhode, & Winkelman,
1991; Tian, Tao, & Ling, 1996), Nonlinearity Inversion (Liñán & Heath,
2012a; Su et al., 2009; Tian et al., 1996) and Hybrid MPC (Herceg, Kvas-
nica, & Fikar, 2009; Zabiri & Samyudia, 2006) are worth mentioning.
Our aim is to implement and investigate two different control schemes
based on Model Predictive Control (MPC) which are able to cope with
the nonlinearity of the actuators.

1.1. Model predictive control

The choice of MPC as the fundamental layer for control strategies
is motivated by its flexibility: MPC allows to directly use process
models, for example empirically derived from experiments, to explicitly
consider state and input constraints in the control formulation. Defining
a complete MPC controller requires then:
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∙ a process model;
∙ input, output and state constraints;
∙ a cost function 𝐽 defined over a finite horizon 𝑁 (‘‘prediction

horizon’’);
∙ an optimisation algorithm;
∙ the application of the so-called ‘‘Receding Horizon (RH) Princi-

ple’’.

At any time instant 𝑘, based on the available process information, RH
requires to solve the optimisation problem (optimise 𝐽 ) with respect
to the future control sequence 𝐮[𝑘,…,𝑘+𝑁−1] = [𝑢(𝑘),… , 𝑢(𝑘 + 𝑁 − 1)]
and then to apply its first element only. Then, at time instant 𝑘 + 1,
basing on the new process information, a new optimisation problem is
solved over the temporal window [𝑘 + 1, 𝑘 + 𝑁] and the procedure is
repeated (Magni & Scattolini, 2014). Standard MPC algorithms can be
easily used to introduce a saturation of the control input, but cannot be
used to directly address the problem of the deadzone. More sophisticated
MPC algorithms are needed to manage its presence. In particular our
first choice is Hybrid MPC, which allows to consider the deadzone
directly in the dynamics of the plant. This requires to introduce in
the optimisation problem logic constraints and variables that can be
first translated into mathematical constraints with integer variables and
then solved by means of Mixed-Integer solvers (Borrelli, Bemporad,
& Morari, 2017). Examples of Hybrid MPC developed for nonlinear
actuators handling can be found in Zabiri and Samyudia (2006), Zabiri
and Samyudia (2004) and Herceg et al. (2009). The second approach
instead relies on constrained MPC and on the introduction of an inverse
deadzone model, as described in Liñán and Heath (2017). In the
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Fig. 1. The laboratory scale overhead travelling crane used for experiments.

following this will be referred as Equivalent Saturation (ES) MPC. This
approach is investigated in Liñán and Heath (2012a) and Liñán and
Heath (2012b). There the authors claim that further research is needed
to assess the algorithm performance in presence of model uncertainties.
In addition, no extensive experimental ES validation has been performed
in conjunction with an MPC controller.

1.2. Aim of the paper

The contribution of this work is twofold:

∙ the robustness analysis of both Hybrid and ES MPC;
∙ the experimental validation of the two algorithms on a laboratory

scale overhead travelling crane exhibiting severe nonlinearities.

The analysis highlights that the two approaches can produce compa-
rable results applied under nominal conditions. On the other side Hybrid
MPC seems to behave more robustly when in presence of unmodelled
nonlinearities.

2. Plant description and model identification

A laboratory scale version of an overhead travelling crane (see Fig. 1)
is used for the experimental trials in this work. The crane allows to pick
up and release a small load by means of a small electromagnet. Motion
is allowed in all the three dimensions (𝑥, 𝑦, 𝑧), with the same hardware
configuration on the three motion axis (results for the 𝑥 − 𝑎𝑥𝑖𝑠 only
will be reported, since the other two share a similar behaviour and do
not provide any extra information to the discussion). The process was
entirely built in the Process Control laboratory of University of Pavia,
and features the following hardware:

∙ the crane structure, which is realised using Makeblock compo-
nents (Mak).

∙ a 9 V DC motor equipped with a belt, used as actuator (Make-
block components);

∙ a quadrature encoder (CUI AMT-102V), used to sense the posi-
tion and the direction of motion.

The system is driven by means of Arduino Mega circuit board and
interfaced with Matlab Real Time Toolbox for control purposes. The
input to the process is the voltage over the DC motor. This will be used
as control variable. The load position represents instead the output of
the process.

The main goal of the control system is then to place the load as pre-
cisely as possible in the desired position, while avoiding any oscillations
during motion. Note that the encoder shows a granularity that results
in a linear position measurement error bounded by [−0.1; +0.1] cm. The
actuation instead shows a non-symmetric deadzone behaviour that is

evident when supplying a purely sinusoidal input voltage to the DC
motor and collecting the corresponding position (see Fig. 2 as example).
Note that the position drifts in the negative direction: a wider extension
of the deadzone for positive voltages can then be expected. In addition,
due to physical limitations, control voltages are constrained in a limited
range, introducing a saturation effect on the control action. In the
following of this section a mathematical description of nonlinearities
affecting the actuation is introduced and the overall model identification
phase is discussed.

2.1. Deadzone

The first step required for system modelling is the definition of the
limits of the deadzone. It can be expressed as follows:

𝑢𝑑𝑧(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑢(𝑡) − ℎ𝑖𝑔ℎ if 𝑢(𝑡) ≥ ℎ𝑖𝑔ℎ
0 if 𝑙𝑜𝑤 < 𝑢(𝑡) < ℎ𝑖𝑔ℎ
𝑢(𝑡) − 𝑙𝑜𝑤 if 𝑢(𝑡) ≤ 𝑙𝑜𝑤

(1)

and is depicted as in Fig. 3a. Recall that the plant shows a non-symmetric
deadzone. Deadzone identification is carried out experimentally, by
applying a weak slew rate voltage ramp (with a positive slope first, then
with a negative one) to the DC motor and verifying the input voltage
value corresponding to the instant in which the system starts moving.
Measures are repeated with the load placed in different positions and
a ‘‘conservative’’ model is defined by choosing the maximum ℎ𝑖𝑔ℎ and
the minimum 𝑙𝑜𝑤 measured values:

𝑙𝑜𝑤 = −2.4 V ℎ𝑖𝑔ℎ = 2.6 V

2.2. Saturation

Fig. 3b depicts a general signal saturation, which can be defined as:

𝑢𝑠𝑎𝑡(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑢𝑚𝑎𝑥 if 𝑢(𝑡) ≥ 𝑢𝑚𝑎𝑥
𝑢(𝑡) if 𝑢𝑚𝑖𝑛 < 𝑢(𝑡) < 𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 if 𝑢(𝑡) ≤ 𝑢𝑚𝑖𝑛

(2)

The voltage control input of the considered plant shows a saturation
whose limits are given by:

𝑢𝑚𝑎𝑥 = 9 V 𝑢𝑚𝑖𝑛 = −9 V

2.3. DC motor

As previously stated, a 9 V DC motor is used as the main actuator
for each axis in the plant. Angular motion is turned into linear motion
by means of a belt pulley. The typical DC motor Input–Output models
(with the control voltage as input and the linear speed as output) are
two poles transfer functions, where the ‘‘slow’’ pole is related to the
mechanical time constant of the motor, while the ‘‘fast’’ pole is related
to its electrical time constant (Leonhard, 2012). Preliminary tests show
that the electrical pole can be neglected in our case. An integrator is
then introduced to move from speed to position. To sum up, the model
for the linear part of the actuator can be written as follows:

𝐺(𝑠) =
𝑃 (𝑠)
𝑈𝑑𝑧(𝑠)

=
𝜇

𝑠(1 + 𝑠𝑇𝑚)
(3)

where 𝜇 is the static gain and 𝑇𝑚 is the motor mechanical time constant.
The scheme of the whole actuator is presented in Fig. 4, with a complete
definition of signals.

Under the hypothesis of having the nonlinearity confined to dead-
zone and saturation, and that the model of the deadzone is sufficiently
reliable, a grey-box identification can be setup (see Fig. 5). The dataset
can be obtained in three steps:

∙ inject a series of sinusoidal inputs 𝑢(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) at different
frequencies 𝜔 into the motor (avoiding saturation) and collect
the position 𝑝(𝑡) as output;

57



Download English Version:

https://daneshyari.com/en/article/7110194

Download Persian Version:

https://daneshyari.com/article/7110194

Daneshyari.com

https://daneshyari.com/en/article/7110194
https://daneshyari.com/article/7110194
https://daneshyari.com

