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A B S T R A C T

In this study, a self-tuning robust integral of signum of error (RISE) based controller is designed and used to
control a magnetic levitation (maglev) system. In the control design, unlike the classical RISE controller, ‘tanh’
function is used instead of ‘signum’ function to obtain a more smooth control signal. The gains of the controller
are updated according to a time-varying update rule. Convergence of the error under the closed-loop operation
is proven via Lyapunov-based stability analysis. The controller is tested on an experimental maglev system and
successful results are obtained.

1. Introduction

Magnetic levitation (maglev) systems provide that a ferromagnetic
object to be levitated and/or held in a desired position in the air with
the help of an electromagnet. Since they remove friction problems,
these systems are used in many industrial areas such as magnetic trains,
vibration isolation in sensitive devices, and high precision positioning
of chip plates in photolithography (Eroglu & Ablay, 2016; Karacam
& Bayrak, 2017). However, these systems have unstable equilibrium
point and nonlinear dynamic structure which make it a challenging
problem to control them (Eroglu & Ablay, 2016; Karacam & Bayrak,
2017). These features also make the maglev system a good test bed
for control strategies. As a result of these, there are so many studies
on the control of maglev systems in the control literature. Karacam
and Bayrak used robust integral of signum of error (RISE) controller
with a cascade structure to control maglev systems and had successful
simulation results (Karacam & Bayrak, 2017). Eroglu and Gunyaz,
used a sliding mode controller with a cascade structure to control an
experimental maglev system (Eroglu & Ablay, 2016). In Benomair,
Firdaus, and Tokhi (2016), Benomair et al. proposed a fuzzy sliding-
mode controller with a nonlinear observer that was used to estimate
the unmeasured states to provide the tracking control of the maglev
system. Al-Araji, proposed a position-tracking control algorithm for
maglev systems by utilizing the backstepping technique based on the
cognitive online auto-tune algorithm (Al-Araji, 2015). Tran and Kang
presented an arbitrary finite-time tracking control method for maglev
systems having uncertain dynamics and external disturbances (Tran &
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Kang, 2014). Nayak and Subudhi presented an output feedback discrete
robust control design for the tracking control of maglev systems (Nayak
& Subudhi, 2016). In the mentioned study, position of the iron ball was
the only needed measurement and the lack of the measurement of the
other state was compensated by utilizing Kreisselmeier filter. Adiguzel
et al. used a backstepping controller to get an iron ball track a desired
trajectory (Adiguzel, Dokumacilar, & Turker, 2016). Lee et al. presented
a self-tuning controller with a mass estimator for controlling the maglev
systems (Lee, Sung, Lim, & Bien, 2000). In Bächle, Hentzelt, and
Graichen (2013), Bachle et al. used a fast nonlinear model predictive
control scheme to control maglev systems. In Assis and Galvao (2017),
Asis and Galvao used sliding mode predictive controller to control an
experimental maglev system. Sun et al. presented a saturated continuous
adaptive control strategy for maglev systems with actuator saturation
constraints and unknown ball mass (Sun, Fang, & Chen, 2017). Pati
et al., proposed a systematic 2 degree-of-freedom control scheme for
reference input tracking and load disturbance rejection for maglev
systems (Pati, Pal, & Negi, 2017). In Zhao and Gao (2014), Zhao and
Gao combined a neural network adaptive control method and a state
feedback control method based on radial basis function neural network
to control maglev systems. Pallav et al. presented a proportional–
integral–derivative (PID) controller with and without derivative filter
for maglev systems (Pallav, Pandey, & Laxmi, 2014). Ahmad et al. used
a PID controller, of which parameters are tuned by genetic algorithm,
for the control of maglev systems (Ahmad, Shahzad, & Palensky, 2014).
Kumar and Jerome used a PID controller whose gains were adjusted via
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linear quadratic regulator approach for the tracking control of maglev
system (Vinodh Kumar & Jerome, 2013). Gandhi and Adhyaru designed
and implemented a pre-fuzzy-PID controller for current controlled mode
of the maglev system (Gandhi & Adhyaru, 2018). In Lin, Lin, and
Chen (2011), Lin et al. developed an adaptive PID control system for the
control of a maglev system. Sahoo et al. presented the design and real
time implementation of fuzzy logic control for maglev system (Sahoo,
Tripathy, & Sharma, 2018). Rubio et al. utilized a neural network
controller design for the trajectory tracking of maglev system (de Jesús
Rubio et al., 2017).

According to the authors’ best knowledge, Karacam and Bayrak
(2017) is the first study that the RISE type controller was used for the
control of maglev system. Simulation studies presented in the mentioned
study show that this type of controller can successfully control the
maglev system. In this study, unlike the controller in Karacam and
Bayrak (2017), ‘tanh’ function is utilized instead of ‘signum’ function to
obtain more smooth control signal. This control design is very similar
to the controller structure in Dasdemir and Zergeroglu (2015) except
the gain which is added to the parameter of ‘tanh’ function. Also the
stability analysis differs from the one in Dasdemir and Zergeroglu
(2015). The proposed controller is combined with a newly designed
self-tuning rule to cope with difficulties of adjusting the control gains.
The self-tuning rule in this study is designed by utilizing the approach
presented in Bidikli, Tatlicioglu, and Zergeroglu (2014). However, since
the structure of the controller proposed in this study different from
the one given in the mentioned study, the approximation used in the
self-tuning rule is completely different and novel. Then, the proposed
controller is applied to an experimental maglev system by considering
the success of this type of controller on maglev systems presented
in Karacam and Bayrak (2017). Convergence of the error in the closed-
loop operation was shown via a Lyapunov-based stability analysis while
the performance demonstration is realized via experimental results.
Proposing a self-tuning continuous RISE based controller for the control
of nonlinear systems and utilizing from it for the control of experimental
maglev system can be considered as the main contributions of this study.

2. System model and its properties

In this section, mathematical model of a maglev system is examined.
It should be noted that, the robust structure of the proposed controller
makes the knowledge of the system model unnecessary. However, the
system model is given by considering the completeness of the study.
The maglev system shown in Fig. 1 is constructed as a combination
of electrical and electromechanical subsystems. In the following sub-
sections, structure and model of these subsystems are examined in a
detailed manner.

2.1. Electrical subsystem

The electrical subsystem of the maglev system is constructed and
modeled as a serial RL circuit having an alternative current voltage
source and a variable inductor. In Fig. 1 inductance of the electromagnet
denoted by 𝐿 (𝑥) ∈ R while the position of the ball is denoted by
𝑥 (𝑡) ∈ R. Inductance of the electromagnet equals to 𝐿1 ∈ R when the
iron ball is removed from the system and equals to 𝐿0 + 𝐿1 ∈ R when
the iron ball is in contact with the electromagnet. It varies according
to the position of the ball except these issues and this situation can
mathematically be expressed as Eroglu and Ablay (2016)

𝐿 = 𝐿1 +
𝑘
𝑥

(1)

where 𝑘 ∈ R is defined as

𝑘 ≜ 𝑥0𝐿0 (2)

Fig. 1. Maglev System.

where 𝑥0 ∈ R denotes the working point where the inductance value
equals to 𝐿0 ∈ R. The mathematical model of the electrical subsystem
is given as

𝑉 = 𝐼
(

𝑅 + 𝑅𝑠
)

+ 𝐿�̇� + 𝐼�̇� (3)

where the voltage, current and resistor values of the electromagnet and
the resistor value of the current sensor are denoted by 𝑉 , 𝐼 , 𝑅 and 𝑅𝑠,
respectively. The final form of the model of the electrical subsystem can
be rearranged as follows by substituting (1) into (3)

�̇� = 1
𝐿
𝑉 −

(

𝑅 + 𝑅𝑠
)

𝐿
𝐼 + 𝑘

𝐿
�̇�
𝑥2

𝐼. (4)

2.2. Electromechanical subsystem

The mathematical model of the electromechanical subsystem can
be obtained according to the Newton’s second law via the free- body
diagram of the iron ball shown in Fig. 1. The electromagnet and
gravitational forces are denoted by 𝐹𝑐 (𝑡) and 𝐹𝑔 (𝑡) ∈ R, respectively.
The gravitational force is expressed as

𝐹𝑔 = 𝑀𝑔 (5)

where the mass of the iron ball and the acceleration due to gravity
are denoted by 𝑀 and 𝑔 ∈ R, respectively. The electromagnet force
is expressed as

𝐹𝑐 = − 𝐼2

2
𝑑𝐿
𝑑𝑥

(6)

and the equivalent force that is effective on the ball can be obtained as

𝐹 = 𝐹𝑐 − 𝐹𝑔 = 𝑘
2

( 𝐼
2

)2
−𝑀𝑔 (7)

where (1), (5) and (6) are utilized. The final form of the model can be
obtained as follows according to the Newton’s second law by considering
the equivalent force in (7)

𝑚 (𝑥) �̈� + 𝑓 (𝑥) = 𝑢 (8)

where 𝑚 (𝑥) ≜ 2𝑀𝑥2

𝑘 , 𝑓 (𝑥) ≜ 2𝑀𝑔𝑥2

𝑘 and 𝑢 ≜ 𝐼2.
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