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a b s t r a c t

An incipient fault tends to be buried by either the process trend or the measurement noise. Fault–trend ratio
(FTR) and fault–noise ratio (FNR) are two main factors that impact the detection performance. An incipient
fault detection approach is proposed in this paper based on the detrending and denoising techniques. There are
three main phases in this approach. First, to increase FTR, a detrending algorithm is implemented. The fault
detection rate can be significantly enhanced, when the normal trend is eliminated from the testing residual.
Second, to increase FNR, a denoising algorithm is realized. The residual obtained from this algorithm can avoid
the incipient fault being buried by the widely oscillating noise. Therefore the fault detection performance can be
further improved. Third, the new detection statistic is composed based on the two algorithms. The approach is
applied to a simulated process, a satellite attitude control system process, and the Tennessee Eastman process.
The comparison results show that the proposed method outperforms the traditional Hotelling method in detecting
incipient faults.

1. Introduction

In modern industry, fault detection and isolation (FDI) is very
important to enhance the system reliability, to prevent serious system
performance deterioration, and to ensure optimal process operation
(Shardt, Hao, & Ding, 2015; Shardt et al., 2012). Current FDI methods
can be conventionally divided into two categories, qualitative methods
and quantitative ones (Chen, Ding, Zhang, Li, & Hu, 2016; Chen, Zhang,
Ding, Shardt, & Hu, 2016). The latter can be further divided into model-
based methods and data-driven ones. With the development of sensors
and databases, the amount of data available has grown quickly. Big
data are characterized by 5 Vs: volume, variety, velocity, variability,
and veracity. Data-driven methods become more and more important in
the tasks of FDI. Artificial intelligent (AI) methods, e.g., artificial neural
networks (ANN) (Dong, Xiao, Liang, & Liu, 2008; Wang, 2003), support
vector machines (SVMs) (Zhang, Zhou, Guo, Zou, & Huang, 2012), and
fuzzy rough sets (Dong et al., 2008; Németh, Laboncz, Kiss, & Csépes,
2010), can also be regarded as data-driven methods, because the models
in the AI methods are often trained by the monitored training data.

Residual generation is the key step of FDI. Residuals used for
constructing the fault detection statistics are generated from either the
model parameters or the monitored normal data. On the one hand, if
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the parameters of a input/output (I/O) model are known, then model-
based residual generators are the preferred ones (Ding, 2013; Yin &
Zhu, 2015), e.g., fault detection filter (FDF), diagnostic observer (DO)
(O’Reilly, 1983) and parity space (PS) (He et al., 2018; Patton & Chen,
1991). On the other hand, if the parameters of the I/O model are
unknown, then data-driven residual generation techniques can be used
instead, e.g., principal component analysis (PCA) (Abdi & Williams,
2010; Hou et al., 2017; Wang, He, Zhou, Li, & Zhou, 2017), partial
least square (PLS) (He, Zhou, Wang, Chen et al., 2015; Tobias et
al., 1995), canonical correlation analysis (CCA) (Chen, Ding, Peng,
Yang, & Gui, 2018; He, Zhou, Wang, & Zhai, 2015; Thompson, 2005),
and identification of autoregressive models with external inputs (ARX)
(Ding, 2014; Dong, Verhaegen, & Gustafsson, 2012; Ljung, 1998).

Incipient fault diagnosis has received considerable attention recently
(Youssef, Delpha, & Diallo, 2016). If an incipient fault is neglected in its
early stage, it may cause a disaster, e.g., a small leak of nitrocellulose led
to the Tianjin port explosion in 2015 in China (Sun, 2015), a tiny aging
problem caused the explosion of the Fukushima nuclear power plant
after an earthquake in 2011 in Japan (Tsubokura, Gilmour, Takahashi,
Oikawa, & Kanazawa, 2012), a small fault in the wheel rims led to
a German high speed train to go out of control in 1998 in Eschede
(Oestern, Huels, Quirini, & Pohlemann, 2000), and a small deformation
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Fig. 1. The relationship between the trend, the noise, and the monitored data.

caused the gas leak that crashed the space shuttle Challenger in 1986
(Kramer, 1992). Incipient fault diagnosis in the modern nonlinear, non-
stationary industrial processes is an important problem. The traditional
fault diagnosis methods are mainly used to diagnose the faults with
significant symptoms. An incipient fault usually cause a small shift in the
observation variables, thus the diagnosis performance of the traditional
methods are not feasible if they are used for diagnosing incipient
faults without any preprocessing. Most current incipient fault diagnosis
methods are based on signal processing techniques, e.g., local approach
based on the likelihood ratio (LR) (Cheng, 2000; Zhang, Basseville,
& Benveniste, 1994), multivariate statistical or probability methods
(Harmouche, Delpha, & Diallo, 2014, 2015; Youssef et al., 2016),
wavelet transform methods (Carneiro, Da Silva, & Upadhyaya, 2008;
Huo, Zhang, Francq, Shu, & Huang, 2017), Hilbert–Huang transform
(HHT), empirical mode decomposition (EMD) (Yan & Lu, 2014), SVMs
(Kang, Kim, & Kim, 2015; Liu, Yang, Zhang, Wang, & Chen, 2016; Long,
Xian, Li, & Wang, 2014; Namdari & Jazayeri-Rad, 2014).

There are two common features of the existing methods:
(1) There is a lack of a strict definition of an incipient fault. Usually

an incipient fault is considered to be a fault with small magnitude. In
fact, an incipient fault should be defined based on the relative magnitude
of the background information, i.e., the trend and the noise. Generally
speaking, a fault is incipient if its magnitude, compared with the range
of the trend and the variance of the noise, is small.

(2) Most incipient fault diagnosis methods are applied for processes
where the monitored data are periodical and oscillate around a constant
mean value. Usually stationary trends are shown in the data of the
monitored processes, e.g., bearings (Huo et al., 2017; Kang et al., 2015;
Li, Xu, Liang, & Huang, 2017; Liu et al., 2016), motors (Menacer, d Nai t
Said, Benakcha, & Drid, 2014) and wind turbines (Sun, Zi, & He, 2014).

There are two natural questions:
(1) How to define and model an incipient fault? What are the main

factors impacting the detection performance of incipient faults?
(2) How to improve the detection performance of incipient faults

if the monitored data have a nonstationary trend and have widely
oscillating noise?

Questions above will be answered in Sections 2 and 3, respectively,
and then an incipient fault detection approach is developed to enhance
the fault detection rate (FDR).

Notations. The transpose, the inverse, the Moore–Penrose pseudo-
inverse, and the Frobenius-norm of matrix 𝑨 are respectively denoted as

𝑨T, 𝑨−1, 𝑨+, and ‖𝑨‖. 𝑨𝑖 denotes the 𝑖th column of 𝑨. 𝟎 denotes a matrix
with proper rows and columns where all entries are zeros. cond (𝑨) is the
condition number of matrix 𝑨, i.e., the ratio of the maximal singular
value to the minimal one. 𝑃 {𝐴} is the probability of the event 𝐴.
𝒓 ∼ N (𝟎,𝜮) denotes that 𝒓 is a normal random vector with zero mean
and covariance 𝜮. 𝜒2 (𝑚) is a chi-square distribution with 𝑚 degree of
freedom and F (𝑚, 𝑛) is a 𝐹 -distribution with 𝑚 and 𝑛 degrees of freedom.
𝜒2
𝛼 (𝑚) and F𝛼 (𝑚, 𝑛) are the upper critical points for 𝜒2 (𝑚) and F (𝑚, 𝑛),

respectively, corresponding to the significance level, 𝛼.

2. Factors impacting incipient fault detection performance

2.1. Trend, noise and incipient fault

As shown in Subfigure A of Fig. 1, the monitored data between
the 700th and the 1000th samples are combined with a sinusoid trend,
widely oscillating noise, and an incipient fault. It is hard to even
visually see the fault in Subfigure A. The thick blue curve in the middle
represents the normal trend. The measured data oscillates between the
upper and lower envelopes caused by the noise. The fault is incipient and
buried by the trend and the noise, because its magnitude is relatively
small compared with the range of the trend or the confidence interval
width of the noise.

At the 𝑖th sampling instant, let 𝒙𝑖 ∈ R𝑛𝑥 be the monitored data, 𝒚𝑖 ∈
R𝑛𝑥 be the trend of the working system and 𝒆𝑖 ∈ R𝑛𝑥 be the environment
noise. Ideally, 𝒚𝑖 should be equal to 𝒙𝑖. However, the monitored process
will inevitably affected by some kinds of noise, e.g., electronic noise,
wind, vibrations, gravitational attraction, variations in temperature, and
variations in humidity, depending on what is measured and on the
sensitivity of the device. Assume that

𝒙𝑖 = 𝒚𝑖 + 𝒆𝑖, 𝒆𝑖
𝑖𝑖𝑑∼ N (𝟎,𝜮) (1)

where 𝒆𝑖
𝑖𝑖𝑑∼ N (𝟎,𝜮) means that the noise vectors at different instants

are independent and identically distributed, with mean vector 𝟎 and
covariance matrix 𝜮.

Aging, environment change, and abnormal operation may cause a
fault to occur in the monitored system, e.g., constant fault, stuck fault,
or drift fault either in the sensors or in the actuators, then the monitored
datum may also involve a faulty signal, 𝒇𝑖 ∈ R𝑛𝑥 . Under the faulty
condition, Eq. (1) becomes

𝒙𝑖 = 𝒚𝑖 + 𝒆𝑖 + 𝒇𝑖. (2)
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