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A B S T R A C T

Industrial robots are electro-mechanical systems with double integrator behaviour, necessitating operation and
model identification under closed-loop control conditions. The Inverse Dynamic Identification Model (IDIM) is a
mechanical model based on Newton’s laws that has the advantage of being linear with respect to the parameters.
Existing Instrumental Variable (IDIM-IV) estimation provides a robust solution to this estimation problem and
the paper introduces an improved IDIM-PIV method that takes account of the additive noise characteristics
by adding prefilters that provide lower variance estimates of the IDIM parameters. Inspired by the prefiltering
approach used in optimal Refined Instrumental Variable (RIV) estimation, the IDIM-PIV method identifies the
nonlinear physical model of the robot, as well as the noise model resulting from the feedback control system. It
also has the advantage of providing a systematic prefiltering process, in contrast to that required for the previous
IDIM-IV method. The issue of an unknown controller is also considered and resolved using existing parametric
identification. The evaluation of the new estimation algorithms on a six degrees-of-freedom rigid robot shows
that they improve statistical efficiency, with the controller either known or identified as an intrinsic part of the
IDIM-PIV algorithm.

1. Introduction

Robots are mechanical systems that have a double integrator be-
haviour and they must be identified, therefore, while operating in
closed-loop. Their direct and inverse dynamic models are formulated in
continuous time and are calculated from Newton’s laws or the Lagrange
equations (Khalil & Dombre, 2004). The method based on the inverse
dynamic identification model (IDIM) and least squares estimation (LS)
is the standard procedure to identify the dynamic parameters of robots.
This approach, termed IDIM-LS, has been successfully applied to identify
the dynamic parameters of several prototypes and industrial robots
(see Briot & Gautier, 2015; Calanca, Capisani, Ferrara, & Magnani,
2011; Khosla & Kanade, 1985; Olsen, Swevers, & Verdonck, 2002;
Raucent, Campion, Bastin, Samin, & Willems, 1992; Swevers, Ganse-
man, Tukel, De Schutter, & Van Brussel, 1997; Wu, Wang, & Wang,
2008 among others). Good results can be obtained provided that an
appropriate derivative bandpass filtering of the joint positions is used
in order to calculate the joint velocities and accelerations. However,
even with the guidelines for tuning the bandpass filtering given in
Gautier (1997), the user can doubt whether the IDIM-LS estimates are
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consistent or not because robots are identified while they are operating
in closed loop while it is known that the LS estimates are biased in this
case (Van den Hof, 1998).

Other identification methods have been evaluated: the Total Least
Squares method (Hollerbach & Nahvi, 1997; Xi, 1995); the Extended
Kalman Filter (Gautier & Poignet, 2001; Kostic, De Jager, Steinbuch, &
Hensen, 2004); the Set Membership Uncertainty (Ramdani & Poignet,
2005); an algorithm based on LMI tools in Calafiore and Indri (1999);
a ML approach (Dolinskỳ & Čelikovskỳ, 2017; Olsen et al., 2002); the
closed-loop output error (Gautier, Janot, & Vandanjon, 2013; Östring,
Gunnarsson, & Norrlöf, 2003); a Bayesian approach (Ting, Mistry,
Peters, Schaal, & Nakanishi, 2006); a method which estimates the non-
linear effects in the frequency domain (Wernholt & Gunnarsson, 2008);
the Unscented Kalman Filter (Dellon & Matsuoka, 2009); an algorithm
based on neural network (Soewandito, Oetomo, & Ang, 2011). In
Calanca et al. (2011), the authors suggest to complete the IDIM-LS
method with deeper statistical analyses; while in Miranda-Colorado and
Moreno-Valenzuela (2017), the authors propose an improvement to the
standard approach by using an algebraic technique for state estimation
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and a procedure based on the Semi-Definite Programming (Wensing,
Kim, & Slotine, 2018). An overview of some of these methods is given
by Wu, Wang, and You (2010). Although all these techniques are of
great interest, they do not really improve the IDIM-LS method, even
when combined with the derivative bandpass filtering, because the LS
estimates are still asymptotically biased. Also, the robustness against
data filtering has not been studied; and some of these approaches have
not been validated on a 6 DOF industrial robot. Except for the approach
presented in Gautier, Janot, et al. (2013), only the direct or inverse
dynamic model is validated and the condition that the columns of
the observation matrix are not correlated with the error terms is not
addressed, even though it is a critical condition to obtain consistent
estimates, see e.g. Young (2011).

An approach able to provide consistent estimates while the system
is identified in closed loop is the instrumental variables (IV) technique
introduced by Reiersøl (1941). In the system identification community,
IV methods have been studied extensively; see e.g. Young (1981, 1970,
2011) for continuous time systems; and (Jakeman & Young, 1979;
Rowe, 1970; Söderström & Stoica, 1983; Wong & Polak, 1967; Young,
1976, 2011) for discrete time systems. One interesting feature of the
optimal Refined IV approach to both continuous (RIVC) and discrete-
time (RIV) model identification (Young, 2015) is the use of an optimal
prefiltering process which takes into account the noise model and so
provides statistically efficient estimates (i.e. with minimum variance).
Furthermore, for systems identified in closed-loop, specific techniques
are able to deal with an unknown controller: see e.g. Gilson, Garnier,
Young, and Van den Hof (2011) and Young (2011). Although these
methods are appealing, they were developed primarily for Linear Time
Invariant (LTI) systems and so cannot be applied straightforwardly to
complex, nonlinear robot systems. This may explain why there are
few applications in robotics (see e.g. Puthenpura & Sinha, 1986; Xi,
1995; Yoshida, Ikeda, & Mayeda, 1993). A first attempt to bridge
the gap between robotics and automatic control was made in Janot,
Vandanjon, and Gautier (2014a) where a generic IV approach relevant
for the identification of rigid industrial robots was proposed. The set of
instruments is the IDM constructed from simulated data calculated from
the simulation of the DDM. The simulation of the direct dynamic model
assumes the same reference trajectories and the same control structure
for both the actual and the simulated robots and is based on the previous
IV estimates. This algorithm, termed the IDIM-IV method, validates the
inverse and direct dynamic models simultaneously, improves the noise
immunity of estimates with respect to corrupted data in the observation
matrix and has a rapid convergence. Despite the good results obtained,
the statistical efficiency of the IDIM-IV estimates is not addressed,
the relationships that exist between the IDIM-IV approach and the
approaches in automatic control are not emphasised and the controller
is assumed to be known to the user.

The aim of this paper is twofold. First, we show how a prefilter-
ing process inspired by RIVC identification can be introduced into
the IDIM-IV identification algorithm for robot system identification,
so establishing links between the robotic and the automatic control
approaches to identification. The resulting IDIM-PIV method extends the
work undertaken in Brunot, Janot, Carrillo, and Garnier (2017), where
the IDIM-IV residuals are statistically analysed, and in Janot, Young,
and Gautier (2017), where the joint velocities and accelerations are
estimated with a state space estimation technique. Secondly, the issue
of identifying the IDIM model in the presence of an unknown controller
is addressed by a parametric identification. Practical validation of this
new algorithm is carried by experiments conducted on a six Degrees-Of-
Freedom (DOF) industrial robot arm, Stäubli TX40.

The paper is organised as follows. The next section provides the
background to robot system architecture, including the models, control
laws and sensors used in the analysis and control of robot systems, as
well as the notation used in such analysis. Section 3 summarises the
standard techniques for robot identification and the use of prefilters in
IV algorithms. In the fourth section, the proposed prefiltering process
and the method of controller identification are described. The results of
experiments are summarised in Section 5; and finally, the concluding
remarks are provided in Section 6.

2. Robot system architecture

2.1. Robot dynamic models

The Inverse Dynamic Model (IDM) of a rigid robot with 𝑛 moving
links is the expression of the (𝑛 × 1) torque vector, 𝝉 𝑖𝑑𝑚, as a function of
the joint positions and their derivatives (Khalil & Dombre, 2004). The
following relationship is derived by application of Newton’s law or the
Lagrangian equations:

𝝉 𝑖𝑑𝑚(𝑡) = 𝑴
(

𝒒𝑛𝑓 (𝑡)
)

𝒒̈𝑛𝑓 (𝑡) +𝑵
(

𝒒𝑛𝑓 (𝑡), 𝒒̇𝑛𝑓 (𝑡)
)

(1)

where 𝑴 is the (𝑛 × 𝑛) inertia matrix; 𝑵 is the (𝑛 × 1) vector of
centrifugal, Coriolis, gravitational, and friction torques; and 𝒒𝑛𝑓 , 𝒒̇𝑛𝑓 ,
𝒒̈𝑛𝑓 are, respectively, the (𝑛 × 1) noise-free vectors of joint positions,
velocities and accelerations. According to Gautier (1986), a joint 𝑗 of
an industrial robot has 14 standard parameters:

𝝌 𝑗 = [𝑋𝑋𝑗 𝑋𝑌𝑗 𝑋𝑍𝑗 𝑌 𝑌𝑗 𝑌 𝑍𝑗 𝑍𝑍𝑗

𝑀𝑋𝑗 𝑀𝑌𝑗 𝑀𝑍𝑗 𝑀𝑗 𝐼𝑎𝑗 𝐹𝑣𝑗 𝐹𝑐𝑗 𝜏𝑜𝑓𝑓𝑗 ]
𝑇 (2)

where 𝑋𝑋𝑗 , 𝑋𝑌𝑗 , 𝑋𝑍𝑗 , 𝑌 𝑌𝑗 , 𝑌 𝑍𝑗 and 𝑍𝑍𝑗 are the six components of
the inertia matrix at the origin of frame 𝑗; 𝑀𝑋𝑗 , 𝑀𝑌𝑗 , 𝑀𝑍𝑗 are the
three components of the first moments; 𝑀𝑗 is the mass of link 𝑗; 𝐼𝑎𝑗 is
the total inertia moment for rotor and gears of the actuator; 𝐹𝑣𝑗 and 𝐹𝑐𝑗
are, respectively, the viscous and Coulomb friction coefficients; 𝜏𝑜𝑓𝑓𝑗 is
an offset parameter containing the asymmetry of the Coulomb friction
with respect to the sign of the velocity and the current amplifier offset
which supplies the motor.

Since some of these parameters have no effect on the dynamic model,
while others are regrouped with linear relations, we obtain a (𝑏 × 1)
vector of base dynamic parameters: 𝜽; see Gautier (1991). In addition,
the IDM is linear with respect to the base parameters and so we obtain
the following linear relation

𝝉 𝑖𝑑𝑚(𝑡) = 𝝓
(

𝒒𝑛𝑓 (𝑡), 𝒒̇𝑛𝑓 (𝑡), 𝒒̈𝑛𝑓 (𝑡)
)

𝜽 = 𝝓𝑛𝑓 (𝑡)𝜽, (3)

where 𝝓 is the (𝑛 × 𝑏) matrix of basis functions (from hereon referred
to as the ‘observation matrix’). It is worth noting that base parameters
are simply referred to as model parameters in Marconato, Schoukens,
Rolain, and Schoukens (2013). Each element of 𝝓 is a basis function of
the body dynamics. These basis functions can be nonlinear relationships
involving the positions, velocities and accelerations and the nature of
these nonlinearities can be estimated, if this is required, using the
approach suggested in Janot et al. (2017).

As a result of inevitable measurement noise and modelling errors,
the actual torque 𝝉 differs from 𝝉 𝑖𝑑𝑚 by an error 𝒗, so that the usual
definition of the Inverse Dynamic Identification Model (IDIM) is given
by

𝝉(𝑡) = 𝝉 𝑖𝑑𝑚(𝑡) + 𝒗(𝑡) = 𝝓
(

𝒒𝑛𝑓 (𝑡), 𝒒̇𝑛𝑓 (𝑡), 𝒒̈𝑛𝑓 (𝑡)
)

𝜽 + 𝒗(𝑡). (4)

The associated DDM relates the joint accelerations to a nonlinear func-
tion of the states (positions and velocities) and the parameters: e.g.,

𝒒̈𝑛𝑓 (𝑡) = 𝑴
(

𝒒𝑛𝑓 (𝑡)
)−1 (𝝉 𝑖𝑑𝑚(𝑡) −𝑵

(

𝒒𝑛𝑓 (𝑡), 𝒒̇𝑛𝑓 (𝑡)
))

. (5)

2.2. Control laws

As pointed out previously, robots need to operate within a closed-
loop control system due to their double integrator behaviour. In partic-
ular, the joint positions are controlled within two nested loops: an inner-
loop for the current control and an outer-loop for the position control.
Most often the control laws are simple Proportional Derivative (PD),
Proportional Integral Derivative (PID), or computed torque and passive
control (see Chapter 14 in Khalil & Dombre, 2004 for details on this
topic). In the present paper, it is assumed that the controller is linear;
that each link is controlled separately from the others; and that there is
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