
Control Engineering Practice 73 (2018) 149–160

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Control-oriented physiological modeling of hemodynamic responses to
blood volume perturbation
Ramin Bighamian a, Bahram Parvinian b, Christopher G. Scully b, George Kramer c,
Jin-Oh Hahn d,*
a Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
b Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
c Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA
d Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA

a r t i c l e i n f o

Keywords:
Mathematical model
Hemodynamic response
Fluid infusion
Hemorrhage
Fluid resuscitation
Blood volume
Physiological closed-loop control

a b s t r a c t

This paper presents a physiological model to reproduce hemodynamic responses to blood volume perturbation.
The model consists of three sub-models: a control-theoretic model relating blood volume response to blood
volume perturbation; a simple physics-based model relating blood volume to stroke volume and cardiac output;
and a phenomenological model relating cardiac output to blood pressure. A unique characteristic of this model
is its balance for simplicity and physiological transparency. Initial validity of the model was examined using
experimental data collected from 11 animals. The model may serve as a viable basis for the design and evaluation
of closed-loop fluid resuscitation controllers.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid infusion is an essential component of circulatory resuscitation
for hypovolemia caused by infection (e.g., sepsis), perioperative and
traumatic hemorrhage, neuro-critical care, burns and so forth (Bouglé,
Harrois, & Duranteau, 2013; Chatrath, Khetarpal, & Ahuja, 2015; Good-
man & Kumar, 2014; Haberal, Sakallioglu Abali, & Karakayali, 2010;
Rochwerg et al., 2014). Fluid resuscitation requires titration and re-
titration of fluid infusion dose to the varying physiological state of
a patient. In today’s clinical practice, caregivers are responsible for
the continuous titration tasks. As a practical matter, this tedious but
life-critical requirement presents a few challenges. First, the choice of
target endpoints is heterogeneous and depends on the underlying patho-
physiology of the patient and the preference of caregivers (e.g., blood
pressure (BP) was shown effective for fluid infusion after uncomplicated
hemorrhage in animals (Vaid et al., 2006) while urinary output (UO)
was shown effective for burns (Salinas et al., 2008)). Second, caregivers
may not effectively perform titration due to, e.g., heavy workload,
distractions, and clinical inertia (Oliveira, Garcia, & Nogueira, 2016).
Third, caregivers may not make optimal titration due to enormous
variability in fluid responses across different patients.

The above limitations naturally suggest the desire for autonomy in
fluid resuscitation. In fact, published reports document that autonomous
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closed-loop control systems for fluid resuscitation may alleviate the
caregiver workload while still maintaining the quality of care by reduc-
ing the laps and errors associated with therapy adjustments (Michard,
2013; Rinehart, Liu, Alexander, & Cannesson, 2012; Rinehart, 2014;
Bighamian, Kim, Reisner, & Hahn, 2016). However, existing work on
closed-loop fluid resuscitation is not abundant, if not rare, both in
terms of design and evaluation. Most closed-loop fluid resuscitation
controllers reported to date are built upon empiric decision rules and
gain tuning (Hoskins et al., 2006; Rinehart, Lee, Cannesson, & Dumont,
2013; Salinas et al., 2008; Ying & Sheppard, 1990). This state-of-the-art
leaves much room for improving the efficacy and robustness of closed-
loop fluid resuscitation controllers via model-based design approaches
established in the field of control theory (Ioannou & Sun, 2012; Khalil,
2001; Nise, 2011; Skogestad & Postlethwaite, 2005; Slotine & Li, 1991).
In addition, most evaluation studies have resorted to costly and time-
consuming animal experiments (Rafie et al., 2004; Chaisson et al.,
2003; Elgjo, Traber, Hawkins, & Kramer, 2000). Discussions at the re-
cent Public Workshop on Physiological Closed-Loop Controlled Medical
Devices organized by the Food and Drug Administration (FDA) found
that computational models may offer time- and cost-efficient means for
non-clinical testing (FDA Public Workshop, 2015). Hence, a credible
mathematical model that can reproduce hemodynamic responses to
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blood volume perturbation may open up new opportunities for the
design and evaluation of closed-loop fluid resuscitation controllers.

A mathematical model must be equipped with a pair of conflicting
attributes to be useful for both design and evaluation of closed-loop
control systems. First, it must be simple enough to streamline the design
of closed-loop controllers. Second, it must be accurate and transparent,
or interpretable, enough to produce legitimate evaluation outcomes.
However, existing mathematical models that aim to reproduce hemody-
namic responses to blood volume perturbation do not appear to fulfill
an adequate balance between these two requirements: one class of
black-box models are too empiric to offer viable physiological impli-
cations (Lewis, 1986; Mardel et al., 1995; Simpson et al., 1996; Wears
& Winton, 1990), whereas the other class of first-principles models are
too complex, involving as many as a few thousand parameters (Abram,
Hodnett, Summers, Coleman, & Hester, 2007; Kofránek & Rusz, 2010;
Pirkle & Gann, 1976; Hedlund, Zaar, Groth, & Arturson, 1988; Arturson,
Groth, Hedlund, & Zaar, 1989; Carlson, Kligman, & Gann, 1996), making
it inappropriate for the purpose of controller design. Therefore, a
pre-requisite for the development of next-generation closed-loop fluid
resuscitation controllers is a simple yet accurate and mechanistically
transparent mathematical model suited to the design and evaluation
of closed-loop fluid resuscitation controllers. Such a model must be
able to reproduce a comprehensive list of hemodynamic responses to
blood volume perturbation used as clinical endpoints of fluid resusci-
tation in today’s clinical practice, including blood volume (BV), stroke
volume (SV) and cardiac output (CO), BP, and central venous pressure
(CVP) (Roche, Miller, & Gan, 2009; Rinehart, Lee, Canales, et al., 2013;
Blankenship, Wallace, & Pacifico, 1990; Cannesson, de Backer, & Hofer,
2011; Bighamian, Kim, et al., 2016).

This paper presents a lumped-parameter model to reproduce hemo-
dynamic responses to blood volume perturbation applicable to the
design and evaluation of closed-loop fluid resuscitation controllers.
A unique characteristic of this model is its balance for simplicity
(via abstraction of complex microscopic physiological mechanisms into
systems-level feedback control actions) and physiological transparency
(via rigorous use of established physiological knowledge). The pre-
liminary validity of the model was examined using experimental data
collected from 11 animals. First, a fully individualized model (a model
obtained for each animal by estimating all the parameters from the data)
was studied. Then, a parametric sensitivity analysis was performed to
obtain a well-conditioned model by identifying low-sensitivity model
parameters and fixing them at nominal values. Finally, a partially indi-
vidualized model (a model obtained by estimating only the parameters
to be individualized from the data) was studied.

2. Materials and methods

2.1. Lumped-parameter model of hemodynamic responses to blood volume
perturbation

The model consists of three sub-models: (a) a control-theoretic model
to relate blood volume perturbation (specifically, hemorrhage and fluid
infusion) to blood volume; (b) a simple physics-based model to relate
blood volume to stroke volume and cardiac output; and (c) a phe-
nomenological model to relate cardiac output to blood pressure (Fig. 1).
Compared to existing models available in the literature, a unique
characteristic of this model is its balance for simplicity (via abstraction
of complex microscopic physiological mechanisms into systems-level
feedback control actions) and physiological transparency (via rigorous
use of established physiological knowledge). Details follow.

2.1.1. Modeling of blood volume response to blood volume perturbation
Fluid in the body is distributed in 3 major compartments: intravascu-

lar (blood), extravascular (interstitial fluid), and intracellular (Guyton,
Taylor, & Granger, 1975). In the context of critical care, the gain or
loss of fluid occurs primarily in the intravascular compartment in the

form of hemorrhage, UO, fluid infusion etc., but the perturbation in
the intravascular fluid volume thus occurred is dynamically distributed
across all 3 major compartments via the inter-compartmental fluid
shift (Guyton et al., 1975). In our prior work, a control-theoretic model
of BV response to fluid infusion was developed (Bighamian, Reisner, &
Hahn, 2016). The basic idea was to formalize established physiological
principles underlying fluid volume distribution (that fluid infused into
the intravascular compartment is distributed in the intravascular and
extravascular compartments to regulate the ratio between their volu-
metric changes (Guyton et al., 1975)) into a mathematical model by
abstracting myriads of complex microscopic fluid shift mechanisms into
macroscopic feedback control actions.

Given that the ratio between the intravascular and extravascular vol-
umetric changes is different for fluid loss (hemorrhage) and gain (fluid
infusion) due to the compositional differences in the fluids involved in
each process (blood lost consists of plasma and red blood cells (RBCs)
while infused fluid may consist of electrolyte (crystalloid such as Lac-
tated Ringer’s solution (LR)) and starch (colloid such as Hextend (Hex))),
our original model developed primarily for fluid infusion scenarios is
not readily applicable to the scenarios in which a patient undergoes
both hemorrhage and fluid infusion. In the current work, our original
model was extended as follows to address this limitation. Denoting the
ratio between the intravascular and extravascular volumetric changes
in the steady state in response to fluid gain (fluid infusion) and loss
(hemorrhage and urine) as 𝛼𝑢 and 𝛼𝑣, respectively, the desired steady-
state change in BV, 𝑟𝐵 (𝑡), can be written as follows:

𝑟𝐵 (𝑡) = 1
1 + 𝛼𝑢 ∫

𝑡

0
𝑢 (𝜏) 𝑑𝜏 − 1

1 + 𝛼𝑣 ∫

𝑡

0
𝑣 (𝜏) 𝑑𝜏 (1)

where 𝑢 (𝑡) and 𝑣 (𝑡) = 𝑣𝐻 (𝑡) + 𝑣𝑈 (𝑡) denote the rates of fluid gain
(infusion) and loss (hemorrhage 𝑣𝐻 (𝑡) and UO 𝑣𝑈 (𝑡)) at time 𝑡. At each
time 𝑡, the inter-compartmental fluid shift is dictated by the discrepancy
between the desired (𝑟𝐵 (𝑡)) versus actual (𝛥𝑉𝐵 (𝑡)) changes in BV as
follows:

𝑞 (𝑡) = 𝑞
(

𝑒𝐵 (𝑡)
)

= 𝑞
(

𝑟𝐵 (𝑡) − 𝛥𝑉𝐵 (𝑡)
)

(2)

Then, applying the conservation of volume to the intravascular
compartment in Fig. 1(a) dictates that the rate of change in 𝛥𝑉𝐵 at time
𝑡 is given by the resultant sum of the fluid gain 𝑢 (𝑡), fluid loss 𝑣 (𝑡), and
the inter-compartmental fluid shift 𝑞 (𝑡) (see the inflows and outflows
associated with the ‘‘Blood’’ bucket):

𝛥�̇�𝐵 (𝑡) = 𝑢 (𝑡) − 𝑣 (𝑡) − 𝑞 (𝑡) (3)

If the inter-compartmental fluid shift is abstracted into the action of
a simple proportional–integral (PI) controller that strives to drive 𝑒𝐵 (𝑡)
to zero in the steady state (Nise, 2011):

𝑞 (𝑡) = −𝐾𝑝𝑒𝐵 (𝑡) −𝐾𝑖 ∫

𝑡

0
𝑒𝐵 (𝜏) 𝑑𝜏 (4)

where 𝐾𝑝 and 𝐾𝑖 are proportional and integral gains, the dynamics
dictating the rate of change in BV can be written as follows by combining
(1)–(4):

𝛥𝑉𝐵 (𝑡) +𝐾𝑝𝛥𝑉𝐵 (𝑡) +𝐾𝑖𝛥�̇�𝐵 (𝑡) = [�̈� (𝑡) − �̈� (𝑡)] +
𝐾𝑝

1 + 𝛼𝑢
�̇� (𝑡)

−
𝐾𝑝

1 + 𝛼𝑣
�̇� (𝑡) +

𝐾𝑖
1 + 𝛼𝑢

𝑢 (𝑡) −
𝐾𝑖

1 + 𝛼𝑣
𝑣 (𝑡) (5)

This model is visualized in Fig. 1(a) as a two-bucket system con-
nected by a bi-directional flow valve, where the buckets represent the
intravascular and extravascular compartments, respectively, while the
valve represents the resultant action of all the inter-compartmental fluid
shift mechanisms.
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