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a b s t r a c t

Stabilization of constant power loads (CPLs) fed through poorly damped input LC filters involves a trade-off
between well damped filter quantities and small generated power modifications, where power modifications in
general may be generated by internal CPL power control or by additional hardware. To simplify this trade-
off, an explicit controller expression is presented, directly parameterized in terms of a damping factor. By
also deriving damping factors corresponding to stabilization with minimal power modifications, tuning of
stabilization becomes straight forward. Although applicable to most stabilization schemes, realization of the
proposed stabilization is illustrated with an induction motor drive, using hardware-in-the-loop simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Electric power systems, appearing in an increasing number of ap-
plications, typically use switched power converters to control the flow
of power. To suppress high frequency switching harmonics, but also to
provide stable input quantities, hardware input filters are often added
to the converters. However, with tight power control of the converters,
it is well-known that these filters may generate stability problems.
This follows since converters efficiently suppressing the effect of input
voltage variations approximately act as constant power loads (CPLs).
The converters therefore represent incremental negative resistances to
the input filters and since these often are poorly damped to minimize
power losses, the system may become unstable, see e.g. Singh et al.
(2017) and Wu and Lu (2014) for an overview. To solve such stability
problems (with a general CPL), the interaction between the input filter
and the CPL must be modified. This may be achieved by adding extra
filter components as proposed in Cespedes et al. (2011), Dzhankhotov
and Pyrhonen (2013) and Erickson (1999), or by inserting additional
dc/dc controlled converter storage systems, see Inoue et al. (2012),
Carmeli et al. (2012) and Kim et al. (2016). An alternative to adding
hardware components is to instead modify the power consumed by the
CPLs themselves, see e.g. Glover and Sudhoff (1998), Jänecke (1992),
Lee and Sul (2014), Liu and Forsyth (2008), Liu et al. (2007), Mohamed
et al. (2012), Mosskull et al. (2007) and Walczyna, Hasse, and Czarnecki
(1996). The obvious advantage with the latter methods is that they
do not increase complexity, cost, size and power losses of the system.
However, the introduced disturbances of the CPL power may instead
interfere with internal control objectives by limiting achievable power
control bandwidth and requiring increased control margins.
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In the literature, focus of stabilization design is often limited to
assuring system stability. However, in practice, this may not be enough,
but also a certain damping of filter quantities is desired. Sudden changes
in the supply voltage should e.g. not result in under- or overvoltages,
causing system shutdown. On the other hand, well damped filter quan-
tities typically require larger modifications of the original system, which
increase size and power losses of additional hardware components, or
represent larger disturbances to the CPL power control. To uniformly
quantify such undesired effects, the different stabilization schemes are
here represented by the corresponding generated power modifications.
Independently of how stabilization is realized, stabilization design may
then be formulated as finding the best trade-off between damping
of filter quantities and the size of the required power modifications
(subject to stabilizing the system). This should further hold at all
relevant operating points. Once a desired power modification has been
derived, it can be directly applied with any active stabilization method
(only considering the specific power control dynamics), but can also
be used as guiding lines for passive filter design. To formalize the
stabilization problem, the two conflicting design goals described above
are summarized in Table 1, where also a robustness requirement to
model errors has been added. In the table, the first two goals will be
referred to as performance requirements and the third to as a robustness
requirement.

Normally, all the design goals in Table 1 are not simultaneously
addressed during stabilization design. For example, for the special case
of input LC filters, only damping is directly considered in Liu et
al. (2008), whereas power modifications are analytically minimized
in Mosskull (2014, 2015a), without explicitly considering damping
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Table 1
Stabilization design goals.

1. Small power modifications due to stabilization
2. Well damped system dynamics
3. Robustness to model errors

Fig. 1. Constant power load (CPL) fed through an input filter. Stabilization has also been
added in the general form of a current source modifying the output current (or power) of
the input filter.

requirements. On the other hand, with the model predictive control
(MPC) approach to stabilization chosen in Smidl et al. (2015), the
trade-off might be handled through weight parameters for different filter
quantities included in a quadratic cost function. It is, however, not clear
how these design parameters should be chosen or updated with the
operating point. To improve stabilization design, explicitly considering
the trade-off between good damping and small power disturbances,
stabilization is here parameterized in terms of a damping factor. It is
shown that stabilization for minimal power modifications as derived
in Mosskull (2014, 2015a) also can be represented this way, where the
corresponding damping factors naturally represent boundary values for
stabilization design.

The design goals of Table 1 are expressed mathematically in Sec-
tion 2 for general CPLs fed through general input filters. Stabilization is
also formally posed as an optimization problem, aiming at minimizing
power modifications subject to meeting the damping and robustness
constraints. For the important special case of input LC filters, it is
shown in Section 3 how the trade-off between the two performance
goals in Table 1 can be handled by explicitly expressing stabilization
in terms of a damping factor of the filter quantities, with the minimal
power modifications derived in Mosskull (2014, 2015a) as special cases.
Actual realization of the derived stabilization structure is demonstrated
with an induction motor (IM) drive using hardware-in-the-loop (HIL)
simulations in Section 4. Conclusions are finally given in Section 5.

2. CPL stabilization

Based on the results of Mosskull (2014, 2015a, 2015b), this section
presents a framework for analysis and design of stabilization of general
CPLs fed through input filters as shown in Fig. 1. Although an LC filter
is explicitly depicted, which is an important special case, the analysis in
this section is valid for general input filters. In the figure, stabilization
is further represented as an additional current source modifying the
current flowing out of the input filter. The current source may represent
passive stabilization, where the additional current component 𝛿𝑖𝑑(t)
(producing a power modification 𝛿P(t)) is generated by connecting extra
filter components at the filter output terminals as proposed in Cespedes
et al. (2011), Dzhankhotov and Pyrhonen (2013) and Erickson (1999). It
may also represent active stabilization, where the current component is
either consumed by auxiliary systems added between the filter and the
CPL (Carmeli et al., 2012; Inoue et al., 2012; Kim et al., 2016), or by
the CPL itself (Glover & Sudhoff, 1998; Jänecke, 1992; Lee & Sul, 2014;
Liu et al., 2007; Liu & Forsyth, 2008; Mohamed et al., 2012; Mosskull
et al., 2007; Walczyna et al., 1996).

The design goals in Table 1 are mathematically expressed in terms
of closed-loop transfer functions in Sections 2.1–2.3. System excitation
is considered both through the supply voltage E(t) and the consumed

CPL power denoted 𝑃𝐶𝑃𝐿(t). The two excitation signals lead to two
different and possibly coupled stabilization problems, here referred to
as disturbance rejection and reference tracking, respectively. It is further
shown that the two performance goals in Table 1 are coupled, whereas
robustness can be separately optimized if the two excitation signals and
some internal filter quantity are available to stabilization. Otherwise,
also the performance and robustness goals are coupled. The mathemat-
ical representation is then used to derive a new very general result on
performance limitation in Section 2.4. Stabilization is finally posed as
an optimization problem in Section 2.5, aiming at minimizing power
(current) modifications subject to meeting the damping and robustness
requirements.

Note that the consumed CPL power 𝑃𝐶𝑃𝐿(t) in some applications can
be considered generated from a power reference 𝑃𝑟𝑒𝑓 (t), see Fig. 1. In
these cases, the nominal CPL power may be represented as 𝑃𝐶𝑃𝐿(𝑡) =
𝐺𝑐𝑃𝑟𝑒𝑓 (t), where the transfer function 𝐺𝑐 models the closed-loop power
dynamics of the CPL.

2.1. Linear system model

A general reciprocal input filter can be represented as a two-port
with inverse hybrid parameters as
(

𝑖 (𝑡)
𝑈𝑑 (𝑡)

)

=

(

𝑌𝑖𝑛 (𝑝) −𝐺𝐸 (𝑝)
𝐺𝐸 (𝑝) 𝑍𝐷𝐶 (𝑝)

)(

𝐸 (𝑡)
−𝑖𝑑 (𝑡)

)

, (1)

where p represents the derivative operator and 𝑌𝑖𝑛, 𝐺𝐸 and 𝑍𝐷𝐶 are
linear transfer functions. Moreover, E(t) and i(t) in Eq. (1) represent the
supply voltage and input current, whereas 𝑈𝑑(t) and 𝑖𝑑(t) are the dc-link
voltage and current, respectively. Note the direction of 𝑖𝑑(t) in Fig. 1,
which explains the minus sign of 𝑖𝑑(t) in Eq. (1).

The dc-link current 𝑖𝑑(t) can further be expressed as the consumed
power P(t) divided by the dc-link voltage 𝑈𝑑(t). Linearizing this equa-
tion results in

𝑖𝑑 (𝑡) =

(

−
𝑃0

𝑈2
𝑑0

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≜𝑌𝐷𝐶0

𝑈𝑑 (𝑡) +
1

𝑈𝑑0
𝑃 (𝑡) , (2)

where 𝑃0 and 𝑈𝑑0 represent steady-state values (and the signals actually
describe deviations from the stationary operating point although not
explicitly reflected in the notation). Eq. (2) also defines the admittance
𝑌𝐷𝐶0 for a (perfect) CPL, which follows from the equation, since the
power P(t) (by definition) is independent of the dc-link voltage. At
positive power, the admittance 𝑌𝐷𝐶0 in (2) is negative and therefore
reduces damping. The destabilizing effect increases with power and
the system may eventually become unstable. The maximum power
assuring stability can be estimated through the Middelbrook stability
criterion, which states that the system in Fig. 1 is stable if ‖𝐿𝐷𝐶‖∞
<1 (Middlebrook, 1976). By using the admittance expression for 𝑌𝐷𝐶0
in Eq. (2), this (sufficient) stability condition can be rewritten in terms
of the consumed load power as |𝑃0| < 𝑈2

𝑑0/‖𝑍𝐷𝐶‖∞. Hence, with large
resonance peaks of the filter transfer function 𝑍𝐷𝐶 (poor damping), the
power limit for stability may be very low and the system hence not
practically usable.

To stabilize the system, an additional input admittance term 𝛿𝑌𝐷𝐶 of
the CPL can be emulated by varying the additional current component
𝛿𝑖𝑑(t) in Fig. 1 as a function of the dc-link voltage. From Eq. (2), this
additional current component can also be represented as an additional
power component 𝛿𝑃 (𝑡) = 𝑈𝑑0𝛿𝑖𝑑(t). The total power P(t) consumed by
the modified CPL in Fig. 1 is then represented as

𝑃 (𝑡) = 𝐺𝑐𝑃𝑟𝑒𝑓 (𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑃𝐶𝑃𝐿(𝑡)

+𝛿𝑃 (𝑡) , (3)

where 𝑃𝐶𝑃𝐿(t) hence represents the nominal CPL power (without
stabilization).
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