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a b s t r a c t

A novel method is presented that provides a novel, large feedback design with adequate stability margins without
a plant model. First, a PID controller is found using on-line tuning. Next, the closed-loop transient response of
the PID system is used to define a bandwidth, and the PID compensator transfer function is used to determine
the plant gain and heuristically estimate the plant slope at crossover. Then, these parameters are used to find the
compensator. A prefilter is designed to improve transient response, and adjustments are suggested for plants
possessing feedback-limiting dynamics. Analytical examples and experimental data illustrate the approach’s
efficacy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Applied control is dominated by the proportional–integral-derivative
(PID) compensator (Ang, Chong, & Li, 2005; Astrom & Hagglund, 1995,
1996, 2001; Gerry, 1987; Kaya & Scheib, 1988; O’Dwyer, 2003; Ziegler
& Nichols, 1942) because of its familiarity, ease of tuning and intrinsic
robustness. There is much literature on PID topics, such as automated
tuning methods (Gorez, 1997; Hang & Sin, 1991; Li, Feng, Tan, Zhu,
Guan, & Ang, 1998), fuzzy logic tuning methods (Arulmozhiyal, 2012)
and adaptive tuning methods (Astrom, Hagglund, Hang, & Ho, 1993;
Minter & Fisher, 1988). For control applications where large feedback is
required over a prescribed bandwidth (applications on type-0 systems),
PID is not the best solution as the compensator is of insufficient
order (only two zeros and an integrator) to adequately and accurately
shape the loop at frequencies near crossover (O’Brien, 2012). For
such systems, high-order compensation (usually between eighth and
fifteenth-order) is required to carefully shape the response to maximize
the available feedback (O’Brien, 2012).

The Nyquist-stable controller (Lurie & Enright, 2000; O’Brien, 2012)
uses a greater than second-order roll-off after the functional bandwidth
and recovers phase with a sharp lead near crossover, providing more
feedback at low frequency. This loop shape has been successfully
implemented on several systems (Carruthers & O’Brien, 2011; McInroy,
O’Brien, & Allias, 2015; Neat & O’Brien, 1996; O’Brien, 2009). The
principal drawback of the Nyquist-stable controller is its inherent sensi-
tivity to changes in the loop response caused by actuator saturations
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or nonlinearities due to component imperfections that cause oscilla-
tion. Recent advances in nonlinear dynamic compensation have been
successful in alleviating these negative features (O’Brien & Carruthers,
2013). ‘Fractional-order’ controllers, often applied to PI systems (Lino
& Maione, 2013), have been used to improve feedback at low frequency
while retaining sufficient relative stability and are an important feature
of ‘Bode optimal loop shape’, which provides robust, large feedback
and sufficient sensor noise suppression (Lurie & Enright, 2000; O’Brien,
2012). The loop shape prescribed in the following, the ‘modified Bode
optimal’ (MBO) loop shape, combines the feedback maximizing roll-off
of the Nyquist-stable controller with the features of the Bode optimal
loop shape.

On-line tuning algorithms provide an advantage for the PID com-
pensator. High-order compensators often require accurate plant transfer
functions, and often the designer does not have these, requiring system
identification (SID). Experimental SID methods are iterative procedures
and the most time consuming and costly components in high-complexity
control design (Astrom & Eykhoff, 1971; Hjalmarsson, 2009; Hussain,
1999; Ljung, 1999; Ljung, Hjalmarsson, & Ohlsson, 2011; Ogunnaike,
1996). SID requires a very carefully chosen model set (i.e. model
structure and polynomial orders), which is the most important and
difficult choice in a SID problem (Astrom & Eykhoff, 1971; Ljung,
1999). Incorrectly identifying the model set that describes the true
system can result in large errors in the estimated model, complicat-
ing control design (Astrom & Eykhoff, 1971; Hou & Wang, 2013).
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Inherently unstable systems or those that must be identified under nor-
mal operation for safety warrant identification in closed-loop. Closed-
loop identification creates additional difficulties because the inputs and
disturbances become correlated and feedback automatically resists small
perturbations (Forssell & Ljung, 1999; Tangirala, 2015). Like traditional
compliance testing techniques and stability augmentation systems for
aircraft, arbitrary agitation (i.e. sine sweeps, white noise inputs, etc.)
of the closed-loop system for purposes of SID may also not be possible,
and only a simple input (i.e. a step or finite impulse) may be all that is
available for closed-loop SID (Tischler, 1995).

A three-step algorithm that allows the design of the MBO controller
without requiring a model of the plant to be controlled is presented.
First, a PID controller is designed using a well-known on-line tuning
algorithm. Next, the closed-loop transient response of the PID system is
used to define a control bandwidth, and the PID compensator transfer
function is used to determine the plant gain and heuristically estimate
the plant slope at crossover. Then, these parameters are used to find
the MBO compensator poles and zeros, and adjustments are suggested
to achieve a stable closed-loop response. A prefilter is designed to
improve transient response characteristics. Eleven analytical examples
and one experimental example are provided to show the efficacy of the
procedure.

1.1. Terminology and background theory

Rational function 𝑇 (𝑠) of the Laplace variable, 𝑠, is the loop trans-
mission (alternatively return ratio) of a feedback loop (O’Brien, 2012).
Frequency 𝜔𝑏, where |𝑇 (𝑗𝜔𝑏)| = 1, is the control bandwidth (alternatively
the 0 dB crossover frequency) (O’Brien, 2012). Frequency 𝜔0 is the func-
tional bandwidth where the modulus breaks from a flat response at low
frequency (O’Brien, 2012). |𝐹 (𝑠)| = |1 + 𝑇 (𝑠)| is the feedback (O’Brien,
2012). |𝐹 (𝑠)| > 1, |𝐹 (𝑠)| < 1 and |𝑇 (𝑠)| ≪ 1 define negative, positive
and negligible feedback, respectively (O’Brien, 2012). |𝐹 (𝑠)| ≫ 1 defines
large feedback (O’Brien, 2012). These definitions indicate the effect
of feedback on the logarithmic response of the closed-loop system to
disturbances. Non-minimum phase,𝐵𝑛(𝜔), is the phase lag not found using
the Bode phase/gain relationship (Bode, 1940). When comparing two
systems, the system with larger feedback in a frequency band will be
superior in the rejection of disturbance in that band. A feedback system
is Nyquist-stable if 𝑇 (𝑠) is stable, satisfies the Nyquist Criterion and has a
steeper than −12 dB/oct roll-off over an interval of frequencies less than
𝜔𝑏 (Lurie & Enright, 2000).

1.2. Problem statement and assumptions

A high-performance/large feedback controller is sought to control
an unknown, resonant system with high modal density without the
benefit of a mathematical model of the plant. The following assump-
tions are made (Astrom & Eykhoff, 1971; Forssell & Ljung, 1999;
Hjalmarsson, 2009; Hou & Wang, 2013; Hussain, 1999; Ljung, 1999;
Ljung et al., 2011; O’Brien, 2012; Ogunnaike, 1996; Tangirala, 2015;
Tischler, 1995).

(1) The plant is linear, time-invariant and is either single-input,
single-output (SISO) or a diagonally-dominant multivariable sys-
tem.

(2) The system is high-performance, thus requiring large feedback.
(3) The plant, actuator and/or sensor possess unknown bandwidth-

limiting features.
(4) A first-principles model of the plant is not available.
(5) The system possesses dynamics which limit open-loop SID.
(6) Feasible closed-loop SID methods are limited; a simple input is

all that is available for closed-loop SID.

Fig. 1. Optimal loop transmission shape at frequencies near crossover.

2. Modified bode optimal loop shape

The Bode optimal loop shape is a design method that provides a loop
shape for robust, large feedback with steep roll-off at high frequency
for sufficient sensor noise suppression (Lurie & Enright, 2000). A lead
provides just enough phase advance to compensate for a steep roll-
off at high frequency and non-minimum phase delay near crossover.
Between the functional bandwidth and crossover, this shape implements
a fractional-order slope. Mimicking the Nyquist-stable controller, this
shape is modified to a more aggressive shape at low frequency when
sufficient control bandwidth is available, thus providing larger feedback
over the functional bandwidth and defining the MBO loop shape.

2.1. Shaping the response between crossover and the functional bandwidth:
slope between first and second-order

A network pole reduces the loop shape slope −6 dB/oct, two poles by
−12 dB/oct and so on. A −6 dB/oct roll-off at crossover provides 90◦ of
phase margin, an excess of 60◦ over the Bode minimum of 30◦ (O’Brien,
2012). A −12 dB/oct roll-off at crossover provides more feedback at low
frequency but 0◦ of phase margin and positive feedback is excessive.
Consider the complex frequency response in Fig. 1. The magnitude is
flat to the functional bandwidth and then transitions to a roll-off of
−10 dB/oct. This slope provides a phase of −150◦ at all frequencies
higher than the functional bandwidth, thus 30◦ of phase margin at
any crossover frequency beyond the functional bandwidth. This is a
desirable loop shape for a linear controller, as the system is robust
to variations in the crossover frequency. This allows the designer the
ability to reduce the loop gain to gain-stabilize unknown high frequency
modes without destabilizing the system at low frequency, which is an
important feature of designing for resonant systems as is discussed in
the following.

The synthesis of this shape is of concern as it cannot be provided by a
rational function. However, recursive pole-zero distributions to achieve
a desired roll-off over a given frequency interval are widely studied in
fractional control. Deriving a relationship like frequency-band complex
noninteger differentiation, a constant slope function is decomposed into
a product of rational and irrational functions, 𝑠−𝑝 = 𝑠−𝑟𝑠−𝑞 , where 𝑟 is
an integer and 0 < 𝑞 < 1 (O’Brien, 2012; Oustaloup, Levron, Mathieu,
& Nanot, 2000). The modulus slope of 𝑠−𝑞 can be approximated by a
network function of appropriately placed poles and zeros separated by
the following.

𝑞 = 𝑏
𝑎 + 𝑏

(1)

Real numbers 𝑎 and 𝑏 are the logarithmic octave spacings from zero to
pole and pole to zero, respectively (O’Brien, 2012).
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