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Dragan  Poljak a,  Silvestar Šesnić a,∗,  Khalil  El  Khamlichi  Drissi b, Kamal  Kerroum b,
Sergey  Tkachenko c

a Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ru –dera Boškovića 32, 21000 Split, Croatia
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a  b  s  t  r  a  c  t

The  paper  deals  with  a derivation  of  a time  domain  variant  of  the  generalized  telegrapher’s  equations
for  transient  electromagnetic  field  coupling  to buried  wires.  The  formulation  is based  on  the  thin  wire
antenna  theory  in  the  time  domain.  The  influence  of a lossy  half-space  is  taken  into  account  by  means  of
the time  dependent  reflection  coefficient  approximation  arising  from  the  modified  image  theory  (MIT),
while  the  per-unit-length  surface  impedance  accounts  for  the  conductor  losses.  The  obtained  space-time
integral  expressions  are  handled  analytically.  The  concept  of the scattered  voltage  is naturally  included  in
the  full  model  formulation.  Computational  examples  are  given  for  the  induced  currents  along  the  buried
wire and  compared  to the  results  obtained  by  using  the transmission  line  (TL)  approximation.
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1. Introduction

The electromagnetic field coupling to buried wires is of appre-
ciable interest in many electromagnetic compatibility (EMC)
applications, such as the analysis of power and communications
cables, submarine dipoles, geophysical probes, grounding systems,
ground penetrating radars (GPR), etc. (e.g., Refs. [1–16]). Buried
wires, subjected to transient external electromagnetic fields induc-
ing current along the wire and generating scattered fields are
usually analysed by means of the transmission line (TL) approach
in either frequency or time domain, e.g. Refs. [1,12].

An important feature of the TL approximation is its formulation
simplicity and relatively low computational cost when compared
to the antenna theory approach. However, TL models suffer from
some serious limitations, as the wire length is required to be signif-
icantly larger than the wire cross section, separation of wires, and
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the height above a lossy ground, or a burial depth, respectively.
In some cases, when there are no losses and radiation resistance
included in the model, the current grows to infinity at resonant
points [1].

Therefore, the TL approximation basically fails to provide a com-
plete solution if the wavelengths existing in the spectrum of the
transient electromagnetic field exciting a transmission line are
comparable to or less than the transverse electrical dimensions of
the conductor.

On the other hand, antenna theory (or full-wave)-based
approaches to the analysis of finite length lines below a lossy
ground, account for the radiation effects [1–10,12,14].

The principal drawbacks of the wire antenna theory applied to
buried wires of finite length are the complexity of formulation and
the relatively high computational cost if longer wires are analysed
[14], particularly if the analysis is carried out directly in the time
domain [15].

There are a number of papers improving standard TL models to
overcome their limitations to a certain extent. This includes anal-
ysis in the frequency domain [17,18] and in the time domain [19].
Some recent work on the subject can be found in Refs. [20–23].
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Fig. 1. Finite length wire below a lossy ground.

Furthermore, a theoretical relationship between the standard
telegrapher’s equations and integral equations arising from the
wire antenna theory including the effect of a lossy ground has been
studied in the last decade in a few papers by Poljak et al. [13,14,24].
Thus, frequency domain studies of overhead and buried wires of
finite length, including the derivation of the corresponding gen-
eralized telegrapher’s equations, have been reported in Refs. [13]
and [14], respectively. Finally, a direct time domain analysis of tran-
sient excitation of finite length wires above a lossy ground using the
concept of the time domain generalized telegrapher’s equations is
given in Ref. [20].

The present work deals with a theoretical relationship between
the rigorous antenna theory approach to the analysis of finite length
wires buried in a lossy ground based on the time domain Pockling-
ton integral equation formulation and the standard time domain
TL approach, thus completing the research previously carried out
in Refs. [13,14,24]. The influence of a lossy ground is taken into
account via the space-time reflection coefficient arising from the
modified image theory (MIT) appearing within the integral equa-
tion kernel function. The conductor losses are taken into account
via the per-unit-length surface impedance [1]. The generalized tele-
grapher’s equations for buried wires derived directly in the time
domain is of both theoretical and practical interest in lightning elec-
tromagnetics and particularly in the transient analysis of grounding
systems. Namely, the scattered voltage is naturally included in
the formulation which is not the case in standard antenna the-
ory. This concept enables one to determine important parameters
of grounding systems, such as transient voltage at the feeding
point, step-voltage at the interface of the air-earth surface or input
impedance. Thus, in addition to providing a correlation between
the antenna theory and transmission line approach at the level of
mathematical formulation of the finite length buried wire prob-
lems, the paper significantly extends the analysis carried out in the
frequency domain (reported in Ref. [14]) to the time domain.

The related time domain integro-differential expressions are
solved analytically using the method reported elsewhere, e.g. in
Ref. [25]. The corresponding transmission line equations are treated
using the Finite Difference Time Domain (FDTD) Method [1].

Finally, some illustrative computational examples pertaining to
a straight buried wire are given in this work.

2. Time domain formulation

A single wire transmission line of a finite length L and radius a,
buried at depth d inside a lossy medium, see Fig. 1, is considered.

The wire is subjected to transient fields from a distant source
transmitted through a lossy medium, inducing a current along the
line.

2.1. Continuity conditions at the buried wire surface

The governing integro-differential expressions for the transient
current induced along the buried wire and related scattered voltage
are derived starting from the interface condition for the tangential
components of the electric field.

If lossy conductors are considered, the tangential component of
the electric field along the wire differs from zero and in the Laplace
domain the tangential component of the total field at the conductor
surface is equal to the product of the unknown wire current I(x,s)
and per-unit-length internal impedance Zs(x,s) of the wire, i.e.

Eexcx (x, s) + Esctx (x, s) = Zs (x, s) I (x,  s) (1)

where Ex
exc and Ex

sct is the excitation and scattered component,
respectively, while s denotes the Laplace variable. The details of
the surface internal impedance Zs(x) of a thin wire can be found
elsewhere, e.g. in Ref. [1].

The convolution operator applied to Eq. (1) yields

Eexcx (x, t) + Esctx (x, t) =
t∫
0

zs (x, �) i (x,  t − �)d� (2)

where zs(x,t) denotes the inverse Laplace transform of Zs(x,s),
i(x,t) is the space-time current along the buried conductor.

2.2. Generalized telegrapher’s equations for buried wires

There are several advantages in using generalized telegrapher’s
equations to analyse straight buried wires instead of solving the
corresponding Pocklington’s equation, such as; a clear correlation
of the antenna theory (AT) model with TL formulation and a direct
inclusion of scattered voltage into the formulation.

Derivation of telegrapher’s type equations for the buried wire
requires the scattered voltage to be included in the formulation
which raises a conceptual difficulty in handling the half-space prob-
lem arising from the definition of the line voltage [1]. This matter
has also been discussed in detail in Refs. [13,14,24]. The tangen-
tial scattered field component due to the current induced along
the wire can be expressed by means of the axial component of the
vector potential Ax and the scalar potential ϕ [25].

Esctx (x, t) = −∂Ax (x, t)
∂t

− ∂ϕ (x, t)
∂x

, (3)

where the space-time vector potential is given by Ref. [26].
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where R is the distance from the source point to the observation
point, both located at the buried wire, while R* is the distance from
the source point located at the image wire in the air to the obser-
vation point located at the wire immersed in a lossy medium, �g
is the time constant and v is the propagation velocity in the lossy
medium.



Download English Version:

https://daneshyari.com/en/article/7112150

Download Persian Version:

https://daneshyari.com/article/7112150

Daneshyari.com

https://daneshyari.com/en/article/7112150
https://daneshyari.com/article/7112150
https://daneshyari.com

