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a  b  s  t  r  a  c  t

This paper  proposes  a novel  method,  called  Ringdown  Time-Domain  Vector  Fitting  (RTD-VF),  for  estimat-
ing  electromechanical  modes  in  interconnected  power  systems.  Such  a method  authentically  extends,  to
the context  of  ringdown  analysis,  the  well  known  Time-Domain  Vector  Fitting  (TD-VF)  method,  which
has  already  been  successfully  applied  within  other  power  systems  areas.  The  proposed  method  is  based
on a  state-space  discretization  framework  which  enables  ringdown  events  to  be  effectively  estimated
when  described  as artificial  unit  impulse  responses.  Moreover,  RTD-VF  completely  avoids  the  necessity
to  perform  discrete  Fourier  transforms  (DFTs)  of ringdown  data  sequences.  Three  case  studies  are  used
to validate  the  proposed  method.  One  of the  examples  considers  a  synthetic  test  signal,  whereas  the
other  two  case  studies  consider  actual  ringdown  data  sets  extracted  from  the  North  American  Eastern
Interconnection  (NAEI)  system  and  from  the  Brazilian  Interconnected  Power  (BIP)  system.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Estimation of electromechanical oscillatory dynamics in inter-
connected power systems plays an important role to infer about
their stability, especially when systems operate closer to their
limits [1,2]. In this context, when a transient event (due to a distur-
bance or a fault) occurs, ringdown signals containing information
about these oscillatory dynamics (modes) are induced in variables
such as power flows and system frequency [3].

Worldwide, research groups have been expending substantial
effort to install entire wide-band monitoring systems (WAMS)
in order to collect real-time power system data not only from
ringdown events but also from ambient (or normal) operation.
Examples of WAMS  based on the so-called phasor measurement
units (PMUs) are found, for instance, in the Brazilian Interconnected
Power (BIP) system [4,5] and in the North American Eastern Inter-
connection (NAEI) system [6–8].

Both ringdown and ambient data acquired through WAMS
encounter their own applications when it comes to estimating
oscillatory modes [3]. As far as linear methods based on ring-
down data are considered, estimating methods can be divided
into two groups: time-domain and frequency-domain methods.
Time-domain methods such as Prony [9] and Matrix Pencil [10]
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consider the roots of characteristic polynomials (or matrices) as
modal estimates. Although widely adopted, these methods may
require extensive calculations due to singular value decomposi-
tions, leading to poor numerical conditioning [11,9,8]. On  the other
hand, frequency-domain methods may  require fewer calculations
since they usually generate oscillatory mode estimates by sim-
ply identifying peak frequencies in the discrete Fourier transform
(DFT) of ringdown data sequences. However, since they rely on
performing DFTs, frequency-domain techniques may suffer from
poor or biased modal estimates due to the well known spectral
leakage (windowing) effect. Such a windowing effect is a critical
issue especially when ringdown data contain increasing/decreasing
dc components. To cope with this issue, recently in [8], it has been
proposed to remove such dc components by using the difference
sequence between two  sets of ringdown data, which must be mea-
sured from two  different locations in the power system.

Now, from a broader perspective, it is well known that the so-
called iterative vector fitting (VF) algorithms [12] appear within
the power systems community as powerful system identification
tools, with successful applications in areas such as modeling of
frequency-dependent network equivalents for transient analysis
[13–15], wideband modeling of transmission lines and transform-
ers [16–18], and passive macromodeling [12,19,20].

Standard frequency- and time-domain VF implementations
have been first proposed more than a decade ago [21,18]. How-
ever, VF has been only recently adapted for estimating oscillatory
modes through ringdown data, in a specific DFT-based setting [22]
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that reveals the potential of VF for estimation of modal parame-
ters in power systems. Nonetheless, as a frequency-domain (FD)
approach, the FD-VF implementation in [22] naturally suffers from
drawbacks which are inherent to DFT computation (poor or biased
modal estimates).

The objective of this paper is to avoid drawbacks inherent to
DFT-based methods by extending the standard Time-Domain VF
(TD-VF) technique [21] to the context of ringdown analysis. TD-
VF implementations intrinsically rely on input–output relations of
linear time invariant systems. Therefore, since post-disturbance
events in power systems are commonly assumed to be generated
by unknown inputs [3], the ringdown version of TD-VF (RTD-VF)
that we propose in this paper alternatively copes with the idea
that a ringdown response can also be partially described by means
of an artificial unit impulse excitation. From a practical point of
view, RTD-VF estimates power system modes directly from time-
domain samples by adopting a suitable state-space discretization.
When compared with the RFD-VF approach described in [22], the
main advantage of RTD-VF lies in the fact that it completely avoids
the necessity to perform DFTs. As a consequence, the method
can also be naturally applied to ringdown signals with increas-
ing/decreasing dc components, without having to create auxiliary
difference sequences (which is an advantage when compared to
[8]).

The paper is organized as follows. In Section 2, we  briefly sum-
marize the context of ringdown response analysis. In Section 3,
the proposed RTD-VF method is described. In Section 4, three case
studies are used to validate the proposal. One of the examples con-
siders mode identification of a synthetic test signal, whereas the
other two case studies consider actual ringdown data sets extracted
from NAEI [6,8] and BIP [5] systems. Finally, Section 5 addresses the
conclusions of this work.

2. Ringdown response analysis

In power systems, one can define a ringdown event to have a
starting time t = 0. The contribution of MOSC oscillatory modes to
such a ringdown response can be then modeled, for t ≥ 0, by
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l=1
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(
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where Al and ϕl are, respectively, the amplitude and phase of the
lth oscillatory mode, whereas �l = � l + jωl and �∗

l
= �l − jωl , l = 1, . . .,

MOSC, with � l and ωl = 2�fl (fl /= 0) being, respectively, the attenu-
ation and the oscillatory frequency of mode l.

A ringdown response may  also be influenced by a set of real-
valued eigenvalues �l = � l, l = MOSC + 1, . . .,  M,  where M denotes the
total number of modes. This influence can be modeled by

yR(t) =
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and leads to the resulting ringdown response

y(t) = hdc + yOSC(t) + yR(t), (3)

where hdc ∈ R  represents the dc component of the ringdown
response, which naturally corresponds to y(t) as t → ∞,  given that
� l < 0 ∀ l.

The Laplace transforms of yOSC(t) and yR(t) can be both readily
expressed via partial fraction expansions,
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which can also be combined into a more compact form so that

Y(s) = hdc
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and, similarly,
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with N = M + Mosc. It is also important to observe that (7) and (8)
establish direct relations between the partial fractions’ residues {ci}
and poles {pi} and the modal parameters in (1) and (2).

In the following section of this paper, we  extend the standard
TD-VF technique [21] to the context of modal estimation through
ringdown data. Although TD-VF has a purely mathematical nature,
we introduce this technique by adopting the nomenclature pre-
sented in Eq. (6), so that an evident link with ringdown analysis
is maintained. During a first explaining, however, it is considered
hdc = 0.

3. From standard TD-VF to the proposed ringdown TD-VF
(RTD-VF)

In the case of strictly proper single-input single-output (SISO)
systems, the TD-VF technique [21] is naturally intended to fit a
scalar input–output relation

Y(s) ≈
N∑
i=1

ci
s − pi

U(s), (9)

where {ci} and {pi} are iteratively estimated by means of a two-
stage procedure, described below.

Pole relocation stage: Based on a set of (known) starting poles
{pi}, the following alternative approximation(

1 +
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di
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)
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is rewritten by its inverse Laplace transform

y(t) ≈
N∑
i=1

ci ũi(t) −
N∑
i=1

di ỹi(t), (11)
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