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a  b  s  t  r  a  c  t

Commonly  for  the  calculation  of  line  ampacity  (rating)  the  steady-state  heat  balance  equation  is  used.
In this  paper  a novel  method  for  the  calculation  of  line ampacity  is developed.  This  method  is  based
on  the  definition  of  an  optimal  control  problem  and  its solution  represents  the line ampacity  in  the
desired  time  range.  The  solution  of the  defined  optimal  control  problem  is obtained  by  applying  the
direct  collocation  method.  In this  manner  the  short-term  line  ampacity  is  obtained  by solving  a  nonlinear
programming  problem.  Nowadays,  many  algorithms  and  hardware  implementations  are  available  for
solving  similar  nonlinear  programming  problems.  Thus,  the  usage  of  this  method  is suitable  for  simpli-
fying  the  calculation  of  the  short-term  line  ampacity  in contemporary  dynamical  line  rating  systems.
Finally,  the  developed  is compared  with  existing  methods  for  the  short-term  line  ampacity  calculation
and  the advantages  and the  disadvantages  of  each  method  are  discussed.  At the  end of the  paper  for
a  240/40  mm2 aluminium  steel-reinforced  conductor,  the  methods  are  tested  on  several  cases  and  the
results  compared.  The  effectiveness  of  each  method  is  checked  by simulating  the conductor  non-steady-
state  heat  balance  equation  with  the  obtained  results  for the  line ampacities.  From  the  obtained  results
it  is proven  that  the  developed  method  effectively  calculates  the short-term  line  ampacity,  and  at  the
same  time  simplifies  the  calculation  process.  This  paper  is  recommended  for researchers  focused  in  the
field  of  dynamical  rating  systems.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The line ampacity represents a limitation in magnitude and
duration of the line current aiming at restricting the conductor tem-
perature below the maximum allowable conductor temperature
(Tmax). From the aspect of calculation the term line ampacity could
refer to the steady-state or short-term (dynamic) line ampacity.

The steady-state line ampacity represent a constant current
which under an assumption of thermal equilibrium for a given set of
climatic parameters and conductor characteristics would increase
the conductor temperate to Tmax [1]. This value is calculated from
the steady-state heat balance equation (SSHBE).

The short-term line ampacity represent a constant current
which under no thermal equilibrium, for the given time changes
of climatic parameters and conductor characteristics, will increase
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the conductor temperature from an initial conductor temperature
(Tcin) to Tmax in a defined time interval.

In this paper a novel method for the short-term line ampacity
calculation is presented. This method is based on defining an opti-
mal  control problem which is solved using the direct collocation
method (described in Ref. [2]). Thus, the problem of the short-term
line ampacity calculation is transformed into a nonlinear program-
ming problem which can be solved by many current algorithms
[3,4].

In contemporary systems basically two  methods for the calcu-
lation of short-term line ampacity exists. The first one is based
on iteratively solving the conductor non-steady-state heat balance
equation (NSSHBE) with different values of line current until the
maximum simulated conductor temperature in the defined time
interval is equal to Tmax [5–8]. Similarly, the second one is based on
iteratively applying an analytical solution of the linearized NSSHBE
[9–12].

Finally, on a typical aluminium-conductor steel-reinforced
(ACSR) the values obtained by contemporary methods for the short-
term line ampacity are compared with the developed method and
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with the value of the steady-state line ampacity. All the results are
reversely checked by simulating the conductor NSSHBE with the
obtained values of the line ampacity and the effectiveness of each
method is discussed.

2. Conductor steady-state and non-steady-state heat
balance equation

In order to understand the different methods and calculations
made in this paper it is necessary to present the conductor steady-
state and non-steady-state heat balance equation.

The steady-state line ampacity is calculated using the conduc-
tor SSHBE equation which in a simplified form could be defined as
follows [1,13]:

I2 · Rac + Ps = Pc + Pr (1)

The components in Eq. (1) can be briefly explained as:

1) Joule heat gain per unit length (I2·Rac)

Conductors of overhead lines offer resistance to the passing
alternating current. According to Joule’s law, this is the main rea-
son why they are heated. In practice, the conductor direct current
(DC) resistance at 20 ◦C is given, which should be adjusted in terms
of the conductor temperature, skin effect, transformer effect and
core losses due to hysteresis and eddy currents (in case of ACSR)
[14–16].

2) Solar heat gain per unit length (Ps)

The Sun emits radiation, which heats the overhead line conduc-
tor. Usually, this term is calculated from the data on the conductor
diameter, global sun radiation intensity and conductor surface
absorptivity coefficient [6].

3) Convective heat lost per unit length (Pc)

High temperature of the conductor surface heats the ambient
air and reduces its density causing its rise if the wind speed is zero
(or close to zero). On the other hand, the wind speed causes circula-
tion of the air around the conductor. Thus, in both cases the cooler
air replaces the warmer and cools the conductor. The convective
heat lost is dependent on the ambient and conductor temperature,
wind speed and angle, line height above sea level and other fixed
parameters [17,18].

4) Radiative heat lost per unit length (Pr)

The radiative heat lost of the conductor is the total radiative
energy transmitted from its surface. This element is calculated
according to Stefan-Boltzmann law from the data on the ambi-
ent temperature, emissivity coefficient of conductor surface and
conductor diameter [19,20].

The components of Eq. (1) are calculated by several differ-
ent methodologies. The most commonly used methodologies are
described in Refs. [1,20–22]. In this paper, all the calculation of com-
ponents will be in accordance with the IEEE 738-2012 standard [1],
with the exception of the calculation of the solar heat gained, which
will be calculated by the following equation [21]:

Ps = D · ˛s · S (2)

From Eq. (1) the steady-state line ampacity can be calculated
according the following formula:

Idop =
√
Pc(Tmax, v, ı, Ta) + Pr(Tmax, Ta) − Ps(S)

Rac(Tmax)
(3)

When using Eq. (1) the balance between heat gained and lost
by the conductor is assumed. When no heat balance is present the
conductor non-steady thermal state arises. The non-steady heat
balance state of a conductor, neglecting the radial and axial tem-
perature distribution, is described by the following equation [1]:

m · cp · dTc
dt

= I2 · Rac + Ps − Pc − Pr (4)

Eq. (4) represents a nonlinear differential equation which can be
solved by using numerical methods such as Runge–Kutta method
[5], Euler method [8], and other methods for solving nonlinear dif-
ferential equations. All the components of Eq. (4) are calculated by
the same methodologies as for the steady-state case, whereas m·cp

in case of ACSR conductors is calculated as follows [21]:

m · cp = ma · ca + ms · cs (5)

In Eq. (5) the linear mass per unit length (m) is invariable up
to 100 ◦C with the conductor temperature, while the specific heat
capacity varies linearly according to the following equations:

ca = ca20 ·
(

1 + ˇa · (Tc − 20)
)

(6)

cs = cs20 ·
(

1 + ˇs · (Tc − 20)
)

(7)

3. Equivalent optimal control problem

From the optimal control theory point of view the problem of
finding the current that taking into account Eq. (4) will drive the
conductor temperature from Tcin to Tmax in the time range from 0 to
tf (final time), with time variable or constant climatic parameters,
can be formulated as an optimal control problem expressed as:

min(J) = min
((
Tc(tf ) − Tmax

)2
)

(8)

subjected to:

dTC
dt

=  f (TC (t), I(t), t) = 1
m · cp

·
(
I2(t) · Rac(TC (t)) + Ps(t)

−Pc(TC (t), t) − Pr(TC (t), t))

Tc(0) = Tcin

I ≥ 0

Tc(t) ≤ Tmax

In Eq. (8) the objective function is formulated as the quadratic
difference between the conductor temperature at final time (Tc(tf))
and Tmax. The imposed constraints on the optimal control prob-
lem are introduced from the differential Eq. (4), the initial value of
conductor temperature, from the fact that the conductor current
cannot be negative, and from the fact that the conductor tempera-
ture in any time interval cannot exceed Tmax.

In the optimal control theory terms the conductor current can
be considered as the control variable, and the conductor tempera-
ture as the state variable. The goal is to find the current I that will
minimize the defined objective function and at the same time sat-
isfy all the defined constraints. In the next section the principle of
solving the problem defined by Eq. (8) with the application of direct
collocation method will be shown.
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