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a  b  s  t  r  a  c  t

A  Wind  power  forecasting  method  based  on the  use  of  discrete  time  Markov  chain  models  is developed
starting  from  real wind  power  time  series  data. It  allows  to directly  obtain  in  an  easy  way  an  estimate
of  the  wind  power  distributions  on a very  short-term  horizon,  without  requiring  restrictive  assumptions
on  wind  power  probability  distribution.  First  and  Second  Order  Markov  Chain  Model  are  analytically
described.  Finally,  the  application  of  the  proposed  method  is  illustrated  with  reference  to  a  set  of  real
data.
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1. Introduction

Wind power forecasting methods can be divided into two main
groups: physical and statistical methods [1,2]. The former [3–6]
are based on physical considerations to provide estimates of future
wind power output starting from meteorological predictions. The
latter [7–10] consist of emulating the relationship between his-
torical values of wind power, historical and forecasted values of
meteorological variables and future wind power output, whose
parameters have to be estimated from data, without making any
assumption on the physics of the phenomenon under study.

Both approaches are used to provide wind power forecasts on
very short-term (up to 30 min  ahead), short-term (from 30 min  up
to 6 h ahead), medium-term (from 6 h to 1 day ahead) and long-
term (from 1 day up to 1 week ahead) [11–13]. Very short-term
forecasting models are usually statistically-based [1].

In the case of short or longer term forecasts, statistical methods
need Numerical Weather Predictions to provide an acceptable fore-
cast accuracy. On the contrary, for a very short-term, pure statistical
methods, including the sole autoregressive part, exhibit good per-
formances [2]. Combinations of physical and statistical approaches
and combinations of different time-scale models (short-term and
medium-term) are referred to as hybrid approach [12–17].

The main limitation of many of the abovementioned models
consists in the fact that their use only enables to perform point
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forecast of the random variable of interest (i.e. the wind power
generated in a future time), whereas they do not allow to formu-
late its probability distribution. In fact, decision making processes
in electrical power systems management [18] and electricity mar-
ket trading strategies [19,20], generally, require more information
than a point forecast.

Models which allow formulating the probability distribution
functions of the wind power are proposed in [21–28]. Unfortu-
nately, also these models presents some limitations. Indeed, they
adopt generalist methods, that are either too complex to be applied
in practice or based on assumptions that are usually far to be
verified in the application (e.g. residuals are independent and iden-
tically distributed Gaussian random variables). In addition, all these
models are difficult to calibrate on the basis of the kind of data that
are commonly available in practical settings.

The models proposed in this paper fall in the category of pure
statistical methods. They have been formulated, starting from an
initial idea presented in [29], on the basis of the Markov Chain
(MC) theory, a kind of approach that have been already used in
relevant literature for the generation of synthetic wind speed and
wind power time series [30–33].

These Markov models are based on few non restrictive hypothe-
ses and can be calibrated and applied on the basis of set of data that
are usually available in practice. Indeed, only past values of wind
power are required for their use. With respect to the models pre-
sented in [29], here, the First Order Markov Chain model (FOMC)
is strongly reformulated while the Second Order Markov Chain
Model (SOMC) is comprehensively formulated by introducing the
concepts of auxiliary transition matrices and auxiliary state vec-
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tor probabilities which allow treating SOMC (or even higher order
models) as an ordinary FOMC from a mathematical point of view.
Moreover, interval prediction, which was not considered in [29],
is addressed also discussing in major details point prediction both
for SOMC and FOMC. Finally, a more extensive literature review is
presented.

From the applicative point of view, the main characteristic of
the proposed models is that they allow to estimate the probability
distribution of wind power over future time horizon, deriving from
it point forecasts and other figures. This gives to the analysts all
the information they need to perform risk analyses and economic
performances evaluation, which are required in electrical power
systems management. Of course the proposed statistical model
can be included in a hybrid model that uses numerical weather
predictions.

In what follows, two models are presented, one based on the
use of First Order Markov Chain, and the other on the use of Second
Order Markov Chain. Then, the probability estimation procedure
is described. In the last section, the application of the proposed
method is briefly illustrated with reference to a case-study.

2. Proposed method

In order to formulate the proposed models, the time axis
is divided into contiguous and equispaced intervals of length
�t = 10 min. Moreover, the state variable is discretized defining
a finite set of (representative) values {s1, s2, ..., sN}, where N is
a calibration parameter. Finally, the average power generated by
the wind farm over the time interval [th−1, th], where th = h · �t,
is considered as state variable of the process, SP(th). So stated, let{

SP(th), h = 0, 1, 2, ...
}

denote a discrete time Markov Chain that
describes the evolution of the state variable over the time.

In order to define the set {s1, s2, ..., sN} it is to consider that,
very often wind farm output equals zero, because the individual
turbines deliver no output outside the so-called cut-in and cut-out
wind speed interval. Moreover, very frequently, the output equals
the nominal wind farm power, Pn, because the turbines deliver their
nominal power when the nominal wind speed is reached, and cut-
out conditions do not apply.

For this reason, the minimum and maximum values, s1 and sN,
of the state variable are set to 0 and Pn, respectively. The remaining
values s2, s3, ..., sN−1 are set to the centers of the N-2 classes of equal
length defined on the interval]0, Pn [.

2.1. First Order Markov Chain

A FOMC satisfies the following equality:

Pr
{

SP(th+1) = sj

∣∣SP(th) = sih
, SP(th−1) = sih−1

, ..., SP(t1) = si1

}
= Pr

{
SP(th+1) = sj

∣∣SP(th) = sih

}
,

for each j, i1, i2, ..., ih ∈
{

1, ..., N
} (1)

Eq. (1) states that, in a FOMC, the probability that SP(th+1) at th+1
is sj, given the state of the process at th, does not depend on the
previous history of the process.

Hence, in order to completely define the process it is necessary
to formulate the one-step transition matrix P (th),  whose generic
element, pij(th), represents the probability that the state of process
at th+1 is sj, given that the state at th is si:

pij(th) = Pr
{

SP(th+1) = sj

∣∣SP(th) = si

}
. (2)

Since, in general, the evolution over the time of power generated
from a wind farm cannot be modeled via an homogeneous Markov
process (i.e. a process with a stationary transition matrix, P (th)), it
is necessary to define the one step transition matrix for each h.

N N-1 … 2 1 

1 1,1p̂ 1,2p̂ … 
11,Nˆ −p p1,Nˆ

2 2,1p̂ 2,2p̂ … 
12,Nˆ −p p2,Nˆ
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.
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.  .

. 

.  .
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ˆ −Np 1,1

ˆ −Np
11,Nˆ −−Np Np 1,Nˆ −

N ˆ N,1p ˆ N,2p … 
1

ˆ −N,Np N,Np̂

Fig. 1. First order one-step transition matrix.

In order to obtain an estimate, P̂(th), of the transition matrix
at time step th, the (most recent) data, collected in the time
window, [th−ws, th], that slides with th, can be used, where the
sliding window size, ws,  is a calibration parameter.

In particular, an estimate for pij(th) can be (easily) obtained as:

p̂ij(th) = nij(th)∑
j

nij(th)
∀i, j, with

N∑
j=1

p̂ij(th) = 1 ∀i, (3)

where nij(th) indicates the number of transitions from state si to
state sj observed in the sequence of wind power data contained
in the sliding window [th−ws, th]. Estimates (3) are the maximum
likelihood estimates of the transition probabilities [30].

If for a given i it is nij(th) = 0 ∀ j = 1, 2, ..., N, then it is assumed:

p̂ij(th) =
{

1 j = i,

0  ∀j /= i.
(4)

Estimates of the transition probabilities at time th+1 can be easily
obtained updating those performed at time th, by means of recur-
sive algorithms.

For N states, the first order transition matrix is an N × N matrix.
According to the representation reported in Fig. 1, each row of the
matrix corresponds to the current state of the process, while each
column corresponds to one of the N possible states at next time
step. The elements of each row of the matrix sum up to 1, since this
sum corresponds to the probability of a transition from a current
state to any possible state (i.e. P(th) is a stochastic matrix).

2.2. Second Order Markov Chain

For a SOMC it results:

Pr
{

SP(th+1) = sj

∣∣SP(th) = sih
, SP(th−1) = sih−1

, ..., SP(t1) = si1

}
= Pr

{
SP(th+1) = sj

∣∣SP(th) = sih
, SP(th−1) = sih−1

}
for each j, i1, i2, ..., ih ∈

{
1, ..., N

} (5)

Eq. (5) states that, in a SOMC, the probability that the process is
in the state sj, at th+1, given the state of the process at th and th−1
does not depend on the previous history.

This implies that a SOMC can be modeled as a FOMC introducing
composite states

{
11,  12, ..., 1N, 21,  ..., 2N, ..., N1, ..., NN

}
[34].

Hence, in order to completely define the SOMC it is necessary to
formulate the auxiliary one-step, N2 × N2, transition matrix, P(th,
th−1), of this “auxiliary” FOMC, where the term “one-step” refers
to the number of steps elapsed from the current epoch, th, to the
subsequent epoch, th+1.
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