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A B S T R A C T

A stochastic energy system optimization model is developed to investigate capacity planning under policy un-
certainty in the ERCOT area. The optimal hedging strategy under carbon tax uncertainty is to delay dec-
arbonization, but an uncertain carbon cap or renewable portfolio standard precludes this approach. The cost of
policy uncertainty is found to be higher under a carbon cap than a tax, and highest under an RPS. Uncertainty
considerations appear to favor price-based over quantity-based instruments.

1. Introduction

This study makes two principal contributions. First, it identifies
hedging strategies for capacity planning under climate policy un-
certainty, with emphasis on robust investments and the timing of dec-
arbonization. Second, it compares the costs of policy uncertainty under
three alternative instruments: a carbon tax, a carbon cap, and a re-
newable portfolio standard (RPS).

The optimal portfolio of generation investments may depend criti-
cally on the future policy context. This poses a formidable challenge
because it is difficult, if not impossible, to predict how policies will
evolve over the life of an asset. One sophisticated methodology that
electric sector planners can employ to select investments under un-
certainty is stochastic programming. This approach considers multiple
states of the world simultaneously to determine an optimal hedging
strategy featuring robust investments. In this study, the OSeMOSYS
energy system optimization framework is reformulated as a stochastic
program. The model is applied to capacity planning in the Electric
Reliability Council of Texas (ERCOT) area, and optimal near-term
hedging strategies are identified.

There is an extensive literature on instrument choice in which
scholars debate the relative merits of alternative climate policy in-
struments such as a carbon tax, a carbon cap, and an RPS. Despite
widespread recognition that uncertainty affects the relative perfor-
mance of different instruments, previous instrument choice analyses
using technologically detailed models have omitted uncertainty. The
present study addresses this gap in the literature by considering

alternative policy instruments within the stochastic programming ver-
sion of OSeMOSYS. It compares the costs of policy uncertainty under a
carbon tax, a carbon cap, and an RPS.

The remainder of this article is organized as follows. Section (2)
reviews relevant literature on instrument choice, stochastic program-
ming, and its application to capacity planning. Section (3) describes the
standard OSeMOSYS model and its stochastic reformulation for this
study. Section (4) details the OSeMOSYS database developed to re-
present capacity planning in the ERCOT area. Section 5 delineates the
policy scenarios assessed using the model. The results presented in
Section 6 elucidate optimal near-term hedging strategies and compare
the costs of policy uncertainty under the three instruments. Section 7
concludes by summarizing the most significant findings.

2. Literature review

2.1. Instrument choice

The instrument choice literature can be traced back to Weitzman
(1974). His seminal analysis shows that taxes and caps which are
equivalent in a deterministic setting may perform quite differently in
the presence of uncertainty. Whether a tax or a cap is the preferred
instrument depends on the relative slopes of the marginal benefit and
marginal cost curves. Based on broad assumptions about the marginal
benefit and marginal cost curves that characterize climate change,
Weitzman suggests that a carbon cap is likely the more appropriate
intervention. Goulder and Schein (2013) conclude that taxes have a
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number of important attractions over caps. Specifically, choosing a tax
helps avoid price volatility, problematic interactions with other climate
policies, and potential wealth transfers to oil-exporting countries. In
addition, a tax helps reduce expected policy errors induced by un-
certainty.

An RPS establishes a minimum amount of electricity that must be
generated using renewable resources. The RPS is a popular form of
regulation in the U.S. power sector, as they have been adopted by more
than half of the states (Heeter et al., 2014). An RPS might define its
renewables target in terms of absolute capacity or energy units (e.g.,
MW or MWh), or a share of total retail electricity sales. Individual RPSs
feature different rules about which resources count as renewables.
Solar, wind, and geothermal are almost universally regarded as re-
newables, but the eligibility of hydro and biomass varies across parti-
cular policies (Wiser et al., 2007).

Theory suggests that an RPS is a more costly means of achieving a
desired level of emissions reduction than a tax or a cap. By dictating
that emissions must be reduced by deploying renewables in the power
sector, an RPS does not incentivize potentially cheaper reductions that
could be achieved through energy efficiency, switching from dirtier to
cleaner fossil fuels, investing in carbon capture and storage (CCS), or
reducing emissions in other end-use sectors. A number of studies have
assessed whether an RPS can be a cost-effective policy for reducing
emissions. Palmer and Burtraw (2005) compute the additional cost of
reducing U.S. electric sector emissions through an RPS instead of a
carbon cap. They find that the RPS is roughly 50% more costly than the
cap. An adverse consequence of the RPS is that it makes the non-re-
newable portion of the electricity mix dirtier. Renewables displace
natural gas more than coal, and a stringent RPS even displaces nuclear
electricity, which produces no carbon emissions. Fischer and Newell
(2008) impose various policy instruments in a model of the U.S. electric
sector and find that reducing emissions by 4.8% using an RPS is more
than twice as costly as achieving the same reduction using a carbon
price. Empirical evaluations of RPSs suggest that these policies have
had mixed results. Langniss and Wiser (2003) argue that the surge in
wind power development in Texas around 2001 was primarily driven
by the adoption of an RPS. According to Wiser et al. (2007), the impacts
of RPSs on retail electricity rates vary by state, but are generally
modest. On the other hand, RPSs in some states do not appear to be
effectively spurring growth in renewables. Carley (2009) finds that
whether or not a state has an RPS is not a significant predictor of re-
newable generation.

2.2. Stochastic programming

Stochastic programming is a rigorous methodology for analyzing
sequential decision-making under uncertainty. Stochastic programming
considers all possible states of the world (and their probabilities of
occurring) simultaneously in order to determine the optimal strategy
that balances outcomes associated with the different states.1 The ob-
jective function is typically an expected value over states of the world,
possibly adjusted to capture attitudes toward risk. Stochastic pro-
gramming is ideal for evaluating strategies defined over multiple stages
where the information available to the decision maker gets updated in
each sequential stage. It computes near-term hedging strategies that
reflect the tradeoff between immediate action and delay, and preserve
flexibility to adapt subsequent decisions to new information as it be-
comes available. These subsequent decisions are known as recourse
decisions.

To clarify the benefits of stochastic programming, it is helpful to

introduce some formal notation. The following formulation represents a
general two-stage stochastic program with a cost minimization objec-
tive (Bistline, 2013):
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In this formulation, the first-stage objective function coefficients (c
vector) and first-stage constraints (A matrix and b vector) are known
with certainty. The second-stage objective function coefficients (dω) and
second-stage constraints (Bω matrix, Cω matrix, and fω vector) are un-
certain when first-stage decisions (x) are made, but are known when
recourse decisions (yω) are determined. The ω subscripts indicate that
these parameters and decisions are specific to the state of the world
(ω ∈Ω). First-stage decisions do not depend on ω because they are de-
termined before the state of the world becomes known. The objective is
to minimize the expected cost over all states of the world, where the
probability of a given state is p ω( ).

This two-stage stochastic program can be evaluated via several so-
lution approaches. The perfect information solution assumes that the state
of the world is known with certainty at the outset, allowing x to depend
on ω. The model is solved as a deterministic problem for each state of
the world. In this case the problem can be expressed as follows, where
zPI is the expected minimized cost under perfect information:
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The stochastic solution assumes that the state of the world is un-
known when first-stage decisions are made. It corresponds to the gen-
eral formulation in Eq. (1) where x is identical in all states of the world
and must be feasible for all of them. Denote the minimized expected
cost achieved using the stochastic solution by zST.

In the expected value solution, first-stage decisions are made as-
suming that all stochastic parameters take on their expected values.
First, the deterministic problem is solved assuming these expected va-
lues occur, yielding optimal first-stage and second-stage decisions xω
and yω . Next, state-dependent recourse decisions yω are determined by
solving the deterministic problem for each state of the world while
holding x fixed at xω . The expected value solution can be formulated as
follows, where zEV is the expected minimized cost using the expected
value solution approach:
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The expected costs under the three solution approaches follow the rule
zPI≤ zST ≤ zEV (Mandansky, 1960). One useful metric is the expected
value of perfect information, defined as EVPI= zST− zPI. The EVPI is the
upper bound on willingness to pay to know the true state of the world at
the outset.2 In reality, perfect information is typically impossible to
obtain, and the best a decision-maker can do is to solve the problem
stochastically. Therefore, the EVPI can also be interpreted as the cost of
uncertainty, which is how it will be applied in this study.

2.3. Application of stochastic programming to capacity planning

A number of previous studies analyze capacity planning using a
stochastic variant of the popular MARKAL family of energy system

1 In contrast, sensitivity analysis, scenario analysis, and Monte Carlo methods all de-
terministically map parameter settings to optimal decisions. While these methods are
simpler to implement than stochastic programming, they offer limited guidance for de-
cision-makers, who must make choices before uncertainty is resolved.

2 In decision analysis parlance, the EVPI is known as the value of clairvoyance
(Howard, 1968).
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