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In this paper, we investigate uncertain saddle point equilibrium differential games under uncertain en- 

vironment. We propose an optimistic value game model and define the value function of the game by 

introducing the concept of non-anticipating strategy. We prove the continuity and dynamic programming 

property of the value function. Then we derive the uncertain Hamilton–Jacobi–Isaacs equation by the 

viscosity solution approach. 
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1. Introduction 

In the past few decades, game theory has been an active 

research field in operations research and control theory. Von 

Meumann and Morgenstern [24] first established the modern 

game theory. Later, Isaacs [15] studied a two person zero sum 

differential game model in a dynamical system which initiated the 

research of differential game theory. Pontryagin [25] considered 

a class of differential games with the maximum principle theo- 

rem. Friedman [12] and Berkovitz [2] investigated the existence 

theorem and approximation method for differential games. 

In previous work, one important way to solve the two person 

zero sum differential game is to transform the original problem 

to solving a PDE (called HJI equaiton). An important assumption is 

that the value function of the game is assumed to be sufficiently 

smooth (e.g. twice differentiable) to make sense of the related 

HJI equation. Nevertheless, this assumption is usually impossible 

to be achieved. Many researchers [5,9,11] has worked on this 

difficulty with some relaxed assumptions. The breakthrough is the 

establishment of concept of non-anticipating strategy and viscosity 

solution (see e.g. [6,8,10,18] ). 

Stochastic differential game [1,3,7,14,28] also received much at- 

tention. However, noises in some particular dynamical systems do 
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not behave like randomness, such as the price of new stock, bridge 

strength and oil field reserves. There are no enough samples to 

ensure the estimated probability distribution of the noises is close 

enough to the long-run cumulative frequency. Hence, stochastic 

differential equations are not able to appropriately model these 

dynamical systems [23] . To estimate this kind of indeterministic 

noises, people have to invite some domain experts to evaluate 

the belief degree that each event may occur. Liu [19] founded 

uncertainty theory in 2007 to rationally deal with personal belief 

degrees. Nowadays, uncertain theory has been applied to many 

fields (see e.g. [4,26,27,30,34,35] ). Thus, for those dynamical 

systems which cannot be appropriately described by stochastic 

differential equations, we may use uncertain differential equations. 

Two person zero sum uncertain differential games were analyzed 

(see e.g. [13,29,31,32] ). 

In this paper, we consider a two person zero sum uncertain 

differential game with non-anticipating strategies. The rest of this 

paper is organized as follows. In Section 2 , we review some basic 

concepts about uncertainty theory. In Section 3 , we formulate 

our saddle point equilibrium game model and introduce the non- 

anticipating strategy. In Section 4 , we discuss the properties of 

the value function. In the Section 5 , we establish the relationship 

between the value function and the uncertain HJI equation with 

the viscosity solution. In the last section, we give an example to 

illustrate our results. 
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2. Preliminaries 

In this section, we introduce some important basic concepts 

about uncertainty theory, which are used throughout the paper. 

Uncertainty theory is a branch of axiomatic mathematics to 

deal with human uncertainty arising from the belief degrees. Let 

� be a nonempty set and L be a σ -algebra over �. Each element 

� ∈ L is called an event. Then uncertain measure M{ �} is used 

to evaluate the belief degree that each event � may occur. The 

axiomatic definition is as follows. 

Definition 1. [19] A set function M defined on the σ -algebra L is 

called an uncertain measure if it satisfies three axioms: 

Axiom 1 . (Normality) M{ �} = 1 ; 

Axiom 2 . (Duality) M{ �} + M{ �c } = 1 , for � ∈ L ; 

Axiom 3 . (Countable Subadditivity) M{ ⋃ ∞ 

i =1 �i } ≤ ∑ ∞ 

i =1 M{ �i } , 
for �i ∈ L , i = 1 , 2 , . . . . 

Then the triplet (�, L , M ) is called an uncertainty space. The 

product uncertain measure M is an uncertain measure on the 

σ -algebra L 1 × L 2 × · · · satisfying M{ ∏ ∞ 

k =1 �k } = 

∧ ∞ 

k =1 M k { �k } . 
Based on the above axioms, the concepts of uncertain variable 

uncertainty distribution, independence, uncertain process, etc. are 

defined in Liu [22] . 

Definition 2. [19] An uncertain variable ξ is called a normal un- 

certain variable if its distribution function is 

�(x ) = 

[
1 + exp 

(
π(e − x ) √ 

3 σ

)]−1 

, x ∈ R , 

where e is the expected value and σ 2 is the variance with σ > 0. 

We can denote ξ by N (e, σ ) . 

Definition 3. [19] Assume that ξ is an uncertain variable, and 

α ∈ (0, 1]. Then ξsup (α) = sup { r|M{ ξ ≥ r} ≥ α} is called the α- 

optimistic value to ξ . 

Theorem 1. [22] Let ξ be an uncertain variable with uncertainty dis- 

tribution function �. Then its α-optimistic value can be calculated 

by 

ξsup (α) = �−1 (1 − α) . 

Definition 4. [21] An uncertain process C t is called a Liu process if 

it satisfies: 

(1) C 0 = 0 and almost all sample paths are Lipschitz continuous. 

(2) C t has stationary and independent increments. 

(3) every increment C s + t − C s is a normal uncertain variable with 

expected value 0 and variance t 2 . 

Definition 5. [20] Let C t be a Liu process, and f 1 , f 2 be some given 

functions. Then 

d X t = f 1 (t, X t )d t + f 2 (t, X t )d C t (1) 

is called an uncertain differential equation. 

To get a full understanding of the concepts in uncertainty the- 

ory such as uncertain calculus, uncertain vector, multidimensional 

uncertain differential equation, please refer to Liu [23] . 

Theorem 2. [33] Let C t be a Liu process. Then there exists an uncer- 

tain variable such that K ( γ ) is the Lipschitz constant of the sample 

path C t ( γ ) for each γ , and 

M{ K ≤ x } ≥ 2�(x ) − 1 , 

where �( x ) is the distribution function of standard normal uncertain 

variable N (0 , 1) . 

3. Problem formulation 

In this section, we formulate our uncertain saddle point equi- 

librium differential game model and provide some estimates 

about the system states. In addition, we introduce the notion of 

non-anticipating strategy. 

We consider a control system described by an uncertain 

differential equation as follows: {
d X s = f (s, X s , u 1 , u 2 )d s + g(s, X s , u 1 , u 2 )d C s , t ≤ s ≤ T , 
X t = x , 

(2) 

where f : [0 , T ] × R 

n × U 1 × U 2 → R 

n , g : [0 , T ] × R 

n × U 1 × U 2 → 

R 

n ×k , with U 1 ∈ R 

p , U 2 ∈ R 

p being some non-empty closed convex 

sets. In the above system, X s is the state vector, t is the initial 

time, x is the initial state, u 1 and u 2 are control vectors taken by 

two involved persons. We label them as Player 1 and Player 2 for 

convenience. For Player i (i = 1 , 2) , we denote the admissible con- 

trol set by U i [ t, T ] = { u i : [ t, T ] → U i | u i is measurable } . In addition, 

C s is a k -dimensional uncertain Liu process. Then we have the 

following assumption: 

( S ) The map f and g are continuous and for any (s, u 1 , u 2 ) ∈ 

[0 , T ] × U 1 × U 2 and x , y ∈ R 

n , there exists a constant L such that { | f (s, x , u 1 , u 2 ) − f (s, y, u 1 , u 2 ) | + | g(s, x , u 1 , u 2 ) 
−g(s, y, u 1 , u 2 ) | ≤ L | x − y| , 

| f (s, x , u 1 , u 2 ) | + | g(s, x , u 1 , u 2 ) | ≤ L (1 + | x | ) , 
where | x | = max 1 ≤i ≤n | x i | for vector x = (x 1 , x 2 , . . . , x n ) and 

| A | = max 1 ≤i ≤m 

∑ n 
j=1 | a i j | for matrix A = (a i j ) m ×n . 

Lemma 1. Under assumption ( S ), for any initial pair (t, x ) ∈ [0 , T ] ×
R 

n and any admissible control ( u 1 , u 2 ) in U 1 [ t, T ] × U 2 [ t, T ] , there 

exists a unique solution X t to the uncertain system (2) . Moreover, for 

any event γ ∈ �, we have the following estimates: {| X s (γ ) | ≤ e L (1+ K(γ ))(s −t) (| x | + 1) − 1 , (3) 

| X s (γ ) − x | ≤ (e L (1+ K(γ ))(s −t) − 1)(| x | + 1) , (4) 

and 

| X s (γ ) − ˆ X s (γ ) | ≤ | x − ˆ x | e L (1+ K(γ ))(s −t) , (5) 

where X s and ˆ X s are two solutions to the uncertain differential equa- 

tion with different initial values. 

Proof. When assumption ( S ) holds, according to Theorem 4 in Ji 

and Zhou [17] , there exists a unique solution to uncertain differen- 

tial Eq. (2) . Next, we only prove the first estimate since the others 

can be obtained similarly. For each event γ , we have 

X s (γ ) = x + 

∫ s 

t 

f (r, X r (γ ) , u 1 , u 2 )d r 

+ 

∫ s 

t 

g(r, X r (γ ) , u 1 , u 2 )d C r (γ ) . 

Then, assumption ( S ) and properties of uncertain calculus yield 

| X s (γ ) | ≤ | x | + L 

∫ s 

t 

(1 + | X r (γ ))d r + K(γ ) L 

∫ s 

t 

(1 + | X r (γ ))d r 

= | x | + L (1 + K(γ ))(s − t) + L (1 + K(γ )) 

∫ s 

t 

| X r (γ ) | d r. 

By Gronwall’s inequality, we have 

| X s (γ ) | ≤ | x | e ∫ s t L (1+ K(γ ))d τ + 

∫ s 

t 

L (1 + K(γ )) e 
∫ s 

r L (1+ K(γ ))d τ d r 

= e L (1+ K(γ ))(s −t) (| x | + 1) − 1 . 

Remark 1. Note that the estimates hold for each γ ∈ � which is 

different from both deterministic case or stochastic case. 
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