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Abstract: In the aerospace industry the (multiplicative) extended Kalman filter (EKF) is the
most common method for sensor fusion for guidance and navigation. However, from a theoretical
point of view, the EKF has been shown to possess local convergence properties only under
restrictive assumptions. In a recent paper, we proved a slight variant of the EKF, namely
the invariant extended Kalman filter (IEKF), when used as a nonlinear observer, possesses
local convergence properties under the same assumptions as those of the linear case, for a
class of systems defined on Lie groups. This is especially interesting as the IEKF also retains
all the desirable features of the standard EKF, especially its relevant tuning in the presence
of noises. In the present paper we provide three examples of engineering interest where the
theory is shown to apply, yielding three EKF-like algorithms with guaranteed local convergence
properties. Beyond those contributions, the present article is sufficiently accessible to help the
practitioner understand through concrete examples the general IEKF theory, and to provide
him with guidelines for the design of IEKFs.
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1. INTRODUCTION

In the aerospace industry the (multiplicative) extended
Kalman filter (EKF) is the most popular method for sen-
sor fusion for guidance and navigation. However, from a
theoretical point of view, the EKF has been shown to pos-
sess local convergence properties only under restrictive as-
sumptions Song and Grizzle (1995); Krener (2003), and as
a matter of fact it can actually diverge, even for small ini-
tial errors. The recent paper Barrau and Bonnabel (2017)
proves a slight variant of the EKF, namely the invariant
extended Kalman filter (IEKF), possesses local conver-
gence properties under highly reasonable assumptions for
a well characterized class of systems defined on Lie groups.
The IEKF was originally introduced in Bonnabel (2007);
Bonnabel et al. (2009b), and builds upon the theory of
symmetry-preserving observers Bonnabel et al. (2009a). It
can also be related to the generalized multiplicative EKF
of Martin and Salalin (2010), the discrete EKF on Lie
groups Bourmaud et al. (2013), see also de Ruiter and
Forbes (2016).

The principles of the IEKF theory as presented in Barrau
and Bonnabel (2017) are not easy to grasp. The main goal
of the present paper is thus to provide a user friendly
presentation and discussion of the IEKF as described in
Barrau and Bonnabel (2017), and to illustrate its stability
properties on three examples of engineering interest. Even
though the purpose of the present article is essentially tu-
torial, it also contains novel theoretical results as we derive
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three non-linear filters for three examples of engineering
interest, and guarantee stability of the derived filters.

Those examples could certainly be tackled through non-
linear observers, along the lines of e.g., Hua et al. (2014);
Wolfe et al. (2011); Batista et al. (2014); Izadi and Sanyal
(2014); Sanyal and Nordkvist (2012); Zamani et al. (2014);
Lee et al. (2007); Hua et al. (2016); Tayebi et al. (2007),
and (almost) global convergence properties could be - or
have already been - obtained. The interest (and difference)
of our approach with respect to the non-linear observer
literature though, is that the three non-linear proposed
filters (namely IEKFs) 1- accomodate discrete time mea-~
surements with arbitrary and varying sampling times, 2-
the gain tuning matches the modeled variance of the noises
through (linearized) Kalman’s theory 3- this implies the
gains easily accomodate time-varying features, such as
time-varying covariance matrices, 4- contrarily to non-
linear observers, the filter provides an indication (through
the covariance matrix P;) of the extent of uncertainty
conveyed by the estimate and 5- the filters viewed as ob-
servers, that is, when noise is turned off, converge around
any trajectory, with an attraction radius which is uniform
over time. It is worthy to note that, to that respect, the
three filters achieve the same goals as the ones pursued by
the very recent XKF Johansen and Fossen (2016), albeit a
wholly different method. Note though, it has not yet been
shown an XKF may be built on the following examples.

In a nutshell, the IEKFs proposed here should be ap-
pealing to the aerospace engineers: they retain all the
characteristics of the standard EKF (first-order optimality,
realtive ease of tuning, adaptivity to time-varying features
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and to discrete aperiodic measurements), but with addi-
tional stability properties, when studied in a deterministic
setting using the tools of dynamical systems theory.

The paper is organized as follows. Section II is a concise
tutorial summary and discussion on Barrau and Bonnabel
(2017). Each following section deals with an example. A
conclusion seemed not necessary, so it was omitted.

2. REVIEW OF THE IEKF METHODOLOGY AND
CONVERGENCE PROPERTIES

In this section, we review the IEKF methodology as
presented in Barrau and Bonnabel (2017), that is, for
continuous time dynamics with discrete time observations
for systems defined on Lie groups. The exposure is meant
to be concise and tutorial, and is enhanced by discussions.
See the Appendix for more details on matrix Lie groups.

2.1 Considered class of systems and IEKF equations

Consider in this section a dynamics on a matrix Lie group
G C RV*N with state y; € G satisfying:

= Sue (Xt) + Xewe, (1)

where w; is a continuous white noise belonging to the Lie
algebra g (see the Appendix). Let ¢ = dim G denote the
dimension of the Lie group G (or alternatively defined by
g = dim g). Assume moreover the following relation holds

fu(ab) = afu(b) + fu(a)b —afu(Id)b (2)

for all (u,a,b) € U x G x G. This system can be associ-
ated with two different kinds of discrete observations at
arbitrary times tg < t1 < to,---.

Left-invariant observations The first family of outputs

we are interested in write:
Y =x, (d'+BL) + V!, Y =, (dF + BE) + VE,
(3)

where (d');<) are known vectors of RY, and where the
(VY)i<k, (By,)i<k are centered Gaussian varibables noises
with known covariance matrices.

The outputs are said to be “left-invariant” as, in the
absence of noise, the outputs are of the form h(y) =
xd so that, x2h(x1) = h(xa2x1). This property is also
referred to as left equivariance in the mathematics lit-
erature and in the theory of symmetry-preserving ob-
servers. For left-invariant observations, a Left-Invariant
EKF (LIEKF) should always be used.

The Left-Invariant Extended Kalman Filter (LIEKF) is
defined through the usual following propagation and up-
date steps:

d . .
Xt = fue(Xt)s  tno1 St <tp,

Propagation (4)

. vl
Xt, = Xt, €Xp | Ly ;
Xe, e —d"
where the function L, : RN — RY is defined through
linearizations as in the conventional EKF theory. But
here, instead of considering the usual linear state error

Update  (5)

Xt¢— Xt, one must consider the following left-invariant error
between true state x; and the estimated state y;:

=X e (6)
which is the counterpart of the linear error y; — x¢ (which
has no proper meaning in the present context), when
dealing with a state space that is a Lie group. Note
that, this error is nominally equal to identity matrix and
not zero. The rationale of the IEKF theory, and more
generally the theory of symmetry-preserving observers, is
to linearize the error system at the propagation and update
state. It turns out the error system, with an error defined
this way, has remarkable properties, that are key to prove
the IEKF stability properties of Barrau and Bonnabel
(2017).

Right-invariant observations  The second family of ob-
servations we are interested in have the form:

Vi =x.'(d + V) + B Y = (@ + V) + B

(7)
with the same notation as in the previous paragraph.
The Right-Invariant EKF (RIEKF), always to be used for
right-invariant observations of the form (7) is defined here

in the same way, alternating between continous time
propagation and discrete time update steps:

d . .
X = fu(Xe)s  tno1 St <tp, (8)
Xe, Yy —d'
X:; = €exp L, )A(tn- (9)
Xe, Yi —d*

To tune the gain L,, the state error must be linearized, but
in this case we rather consider the right-invariant error

nt = Xexg (10)

Gain tuning To tune the gain matrix L,, one must lin-
earize the error equation associated to (6), or respectively
(10). To do so, the user can refer to the general theory of
Barrau and Bonnabel (2017), or rather proceed to a case
by case derivation as done in the examples below, which is
recommended. In any case, one can associate to the non-
linear error (6), or (10), a vector & € R? that captures the
error up to the first order. It can be used to obtain a linear
approximation to the true error system, of the form:

%ft = As& + D(Xe)Wy (11)

where w; is a continuous noise in R? and to a linearized
error update equation of the form

g;: = gtn - Ln(Hgtn + E(f(tnﬂ/tn) (12)

with V,, a centered Gaussian. To account for the fact
the stochastic terms entering the system depend on the
estimated trajectory, we define as in the standard EKF
theory with non-additive noises (see e.g. Stengel (1986))
the covariance matrices

Q(Rt) = D(R+)Cov(e) D(Re)"
N(f(tn) = E(f(tn)OOU(sz)E(f(tn)T

As in the standard EKF methodology, the “optimal” gain
L,, is then obtained through the Kalman equations:
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