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Abstract: Synchronization of oscillations is a phenomenon prevalent in natural, social, and
engineering systems, such as neural circuitry in the brain, sleep cycles in biology, semiconductor
lasers in physics, and periodic vibrations in mechanical engineering. The ability to control
synchronization of oscillating systems then has important research and clinical implications,
for example, for the study of brain functions. In this paper, we study optimal control
and synchronization of nonlinear oscillators described by the phase model. We consider
both deterministic and stochastic cases, in which we derive open-loop controls that create
desired synchronization patterns and devise feedback controls that maximize the steady-state
synchronization probability of coupled oscillators in the presence of shared and unshared noisy
stimuli modeled by the Brownian motion.

Keywords: Stochastic control, nonlinear oscillators, synchronization, neurons, computational
optimal control.

1. INTRODUCTION

Synchronization of oscillations is a phenomenon prevalent
in natural, social, and engineering systems. The concept of
synchronization is particularly significant to the study of
biological systems (Strogatz [2000]), which exhibit endoge-
nous oscillations with periods ranging from milliseconds,
such as in spiking neurons (Izhikevich [2007]), to years, as
in hibernation cycles (Mrosovsky [1980]), and important to
physics, such as semiconductor lasers (Fischer et al. [2000])
and mechanical engineering, such as vibrating mechanical
systems (Blekhman [1988]). Controlling synchronization
then has compelling applications in a wide range from
clinical medicine, such as protocols for coping with jet lag
(Vosko et al. [2010]) and clinical treatments for neurologi-
cal disorders including epilepsy and Parkinson’s disease (L.
Hofmann et. al [2011]), to the design of neurocomputers
(Hoppensteadt and Izhikevich [1999]).

The dynamics of self-sustained oscillations in biological,
physical, and engineering systems are often described in
terms of limit cycle oscillators. The high-dimensional limit
cycle dynamics can then be reduced to a representation
with a single phase variable (Brown et al. [2004]). Such
phase-reduced models, due to their simplicity, are very
popular for modeling and analyzing dynamical properties
of oscillators at both individual and population levels. For
example, the minimum-energy waveform for entrainment
of neuron oscillators to a desired forcing frequency and
charge-balanced time-optimal and minimum-power con-
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trols for spiking a neuron at specified timing have been
derived based on the phase model (Zlotnik and Li [2012],
Dasanayake and Li [2014, 2011], Nabi and Moehlis [2010]).
Synchronization engineering techniques, which utilized a
global, nonlinear delayed feedback to induce a pre-selected
synchronization structure, have been developed for effec-
tive control of the collective behavior of globally coupled
nonlinear phase oscillators (Kiss et al. [2007]).

In practice, these oscillating systems, such as neurons,
receive inputs that are inherently stochastic in nature due
to, for example, random variation in inter-arrival times of
presynaptic events. These external stimuli are well approx-
imated by white noise when the neurons are constantly
bombarded with many presynaptic inputs, and, moreover,
involve both shared and unshared components, because, in
addition to receiving global nonspecific background noise,
some neurons respond to particular noisy stimuli but some
do not (Ly and Ermentrout [2009]). Although phase mod-
els have been intensively employed to analyze synchroniza-
tion of an ensemble of neuron oscillators, there exists little
work on stochastic control of phase oscillators (Teramae
and Tanaka [2004]), and the realization of a desired steady-
state distribution in an ensemble of noisy oscillators using
an external control has not been investigated.

In this paper, we design optimal waveforms to control syn-
chronization of nonlinear oscillators described by the phase
model. In particular, we consider the synchronization of
two oscillators in the absence and presence of stochastic
stimuli. In the next section, we introduce the phase model
and derive open-loop controls that form specific synchro-
nization patterns of two uncoupled oscillators. In Section
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3, we study the stochastic control of two coupled oscillators
in the presence of additive noise modeled by Brownian
motion. We find optimal feedback controls that maximize
the steady-state synchronization probability of this system
driven by correlated (shared) and independent (unshared)
noise. Although in practice it is often desired to consider
the control of a population of oscillators, theoretical devel-
opments based on a two-oscillator system is fundamental
and insightful to the study of ensemble systems.

2. OPEN-LOOP CONTROL OF UNCOUPLED
OSCILLATORS

2.1 Phase Models

The high-dimensional complex dynamics of an oscillating
system described by an ordinary differential equation
system ẋ = F (x, v), where x(t) ∈ R

n is the state and
v(t) ∈ R is a control, can be reduced by a model reduction
technique to a single phase variable, given by

θ̇ = f(θ) + Z(θ)u(t), (1)

where θ ∈ Θ = [0, 2π) is the phase variable, f : Θ → R

represents the system’s baseline dynamics, Z : Θ → R is
known as the phase response curve (PRC), and u(t) ∈ R is
the external stimulus. This model reduction is valid while
the state, x, of the full dynamical system remains in a
neighborhood of its unforced periodic orbit (Brown et al.
[2004]), and hence phase models are accurate only when
the control input u is weak. Phase models are widely em-
ployed in physics, chemistry, and biology (Pikovsky et al.
[2003]) to study rhythmic systems where the oscillatory
phase, but not the full state, can be observed, and where
the PRC can be obtained experimentally.

2.2 Phase Pattern Formation of Two Oscillators

We consider a pair of oscillators described by the sinusoidal
phase model, which receive a common control input. Let
θi denote a representative oscillator from the ensemble i,
i = 1 or 2. The dynamics of this two-oscillator system are
given by

θ̇1 = ω1 + u sin θ1, (2)

θ̇2 = ω2 + u sin θ2, (3)

where we take ω2 > ω1. The common input u(t) servers
as a coupling of the two oscillators. We assume that a
well-defined initial state can be established by a classical
phase resetting method, where a strong pulse is applied to
the oscillators and brings them to the same initial phase,
independent of their previous phases (Winfree [1980]). We
show that specific pattern formation between these two
oscillators can be achieved by the application of piecewise
constant open-loop controls. Note that our approach is
different from that presented in (Hoppensteadt and Izhike-
vich [1999]), where the phase difference is built asymptot-
ically in time.

Without loss of generality, we assume the common initial
phase of the two oscillators θ1(0) = θ2(0) = 0. We consider
the problem of designing controls to create a specific phase
configuration of the two oscillators, i.e., θ2(t)− θ1(t) = απ
for α ∈ (0, 1]. Our control strategy is to first build the
desired phase difference απ with a constant control and
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Fig. 1. (a) The synchronization control (left panel) that
builds and maintains π/2 phase difference between
the two oscillators with ω1 = 1.9π rad/sec and
ω2 = 2.1π rad/sec and the resulting phase difference
trajectory (right panel) for n = 1 as in (5). The exact
π/2 phase difference is maintained at every π phase
evolution. (b) The synchronization control (left panel)
that builds and maintains π phase difference and the
resulting phase difference trajectory (right panel).

then design a sequence of piecewise constant controls to
periodically maintain this configuration.

Let Tα be the time instance at which the two oscillators
create the phase difference απ for some desired α ∈ (0, 1].
A constant control input u = Uα that achieves this phase
separation satisfies θ1(Tα) = 2nπ and θ2(Tα) = (2n+ α)π
for some positive integer n, which implies, by integrating
(2) and (3),
∫ 2nπ

0

dθ1
ω1 + Uα sin θ1

=

∫ (2n+α)π

0

dθ2
ω2 + Uα sin θ2

= Tα,

or, equivalently,

2nπ
√

ω2
1 − U2

α

=
2

√

ω2
2 − U2

α

{

nπ + tan−1
[ ω2
√

ω2
2 − U2

α

·
(

tan
απ

2
+

Uα

ω2

)]

− tan−1 Uα
√

ω2
2 − U2

α

}

= Tα. (4)

Let L(Uα) and R(Uα) denote the left and the right hand
side of the equality in (4), respectively. Then, we have
L(0) = 2nπ/ω1, R(0) = (2n + α)π/ω2, L(ω1) → ∞, and
R(ω1) < ∞. Moreover, if

ω2

ω1
<

2n+ α

2n
, (5)

then L(0) < R(0), while it is always L(ω1) > R(ω1). Thus,
when (5) is satisfied, the transcendental equation (4) has
a solution Uα ∈ (0, ω1). The duration Tα corresponding
to this Uα is given by Tα = L(Uα) = 2nπ√

ω2
1
−U2

α

from (4).
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