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Abstract: We formulate a general epidemic model with two arbitrary probability distributions
for describing durations of infectivity and immunity. The model is given as a coupled system
of a delay differential equation and a renewal equation for two dynamical variables: susceptible
population and the force of infection. It is shown that there exists a unique endemic equilibrium
if the basic reproduction number is greater than one. Assuming that a fixed duration of
immunity we show that the endemic equilibrium becomes unstable via Hopf bifurcation. We
briefly discuss that periodic outbreak of mycoplasma pneumoniae may be interpreted with the

result of instability of the endemic equilibrium.
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1. INTRODUCTION

In some communicable diseases e.g. measles and pertusis,
established immunity after infection wanes through time.
Decreased herd immunity due to the waning immunity
may induce re-emergence of epidemic. Formulation and
analysis of mathematical models that take into account
waning immunity are of importance to gain insight into
the role of waning immunity that possibly affects the long-
term disease transmission dynamics. In some countries
periodic outbreak of mycoplasma pneumoniae has been
observed, see Nquipdop et al., (2013). It is also reported
that some individuals re-infect mycoplasma pneumoniae.
Our aim in this paper is to approach to a relation of
the periodic outbreak of mycoplasma pneumoniae and the
reinfection, but with a detour formulating a rather general
deterministic epidemic model.

SIRS type epidemic model is one of the simplest determin-
istic mathematical models taking into account of waning
immunity, see Hethcote et al., (1981); Mena-Lorca and
Hethcote (1992). In the model individuals change the
status cyclically as Susceptible—Infective—Recovered—
Susceptible. The SIRS model can be formulated as a sys-
tem of differential equations:
d

55(t) == BS(OI(t) + SR(), (1a)
@10 =8S(0)1(1) 1), (1b)

%R(t) —~I(t) — 6R(1). (1¢)

Here S(t), I(t) and R(t) respectively denote susceptible,
infective and recovered population at time ¢. Model (1) has
three positive parameters: (3 is the transmission coefficient,
~ is the recovery rate and 0 is the rate of waning immunity,
see e.g. Gongalves et al., (2011); Hethcote et al., (1981);

Mena-Lorca and Hethcote (1992) for detail. An important
feature of the model (1) is existence of a positive constant
solution that is referred as an endemic equilibrium, when
the basic reproduction number is greater than one. It
is known that the endemic equilibrium is asymptotically
stable.

In the model (1) one can notice that exponential distri-
butions are assumed for both the recovery process and
the waning immunity. Infective individuals who infected
time a ago leave the I-compartment and enter to the R-
compartment with probability ve~7® per unit of time at
time ¢. Similarly, recovered individuals who entered to the
R-compartment time a ago obtain susceptibility to the
disease, due to the waning immunity, and enter to the S-
compartment with probability de~%® per unit of time. The
assumptions stabilise the endemic equilibrium, as seen in
Gongalves et al., (2011); Hethcote et al., (1981); Mena-
Lorca and Hethcote (1992), thus, to explain the observed
sustained oscillations, in the mathematical model, it is
necessary to take into account of other distributions of
infectious and immunity periods: in which time who re-
cover from the infection and in which time who obtains
the susceptibility?

Here we formulate a general epidemic model that allows
general probability density functions describing the dura-
tions of infectivity and immunity. The model is formulated
by delay equations, a coupled system of a renewal equation
and a delay differential equations, following the spirit of
papers, Diekmann and Heesterbeek (1990); Diekmann
and Gyllenberg (2012); Diekmann and Metz (2010). Our
model is closely related to the one studied in Gongalves
et al., (2011), where the authors formulate a delay differ-
ential equation model describing durations of infectivity
and immunity by gamma distributions. Our formulation
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explicitly writes the renewal process of the infection with
easily incorporating the variable infectivity.

In the following section we formulate an epidemic model
with waning immunity by delay equations. In Section 3
we show existence of an endemic equilibrium and compute
the characteristic equation. In Section 4, for a special case,
we analyse the characteristic equation and discuss periodic
outbreak of mycoplasma pneumoniae relating the result of
instability of the endemic equilibrium.

2. DELAY EQUATION FORMULATION

We structure infective and recovered populations by age
since infection (the time elapsed since the last infection
established) and by age since recovery, respectively. We
refer these two structuring variables as infection-age and
recovery-age for short. Let i(t,a) and r(¢, a) be the density
of infected individuals at time ¢ with respect to infection-
age a and then the density of recovered population at time
t with respect to recovery-age a. Infected and recovered
populations are expressed as

I(t) = /OOO i(t,a)da, R(t) = /OOO r(t,a)da.

The SIRS-type transmission dynamics can be described by
a system of partial differential equations:

Lo =—S/ﬁ i(t, a)d

+/0 s(a)r(t,a (2a)
<§t + 88(1) i(t,a) = — y(a)i(t, a) (2b)
(;ﬁi) r(t,a) = — 5(a)r(t, a) (2)

with boundary conditions

0 /0 ~ B(a)ilt, a)da

r(t,0) = /O S (a)i(t, a)da.

For simplicity, here we ignore population demography
as in Gongalves et al., (2011). The parameters have
same interpretations as in (1) but now depend on either
infection-age or recovery-age.

To derive an equivalent model in terms of delay equations,
we introduce a variable A to denote the force of infection
at time t:

_ /0 ~ Ba)i(t, a)da. 3)

Let us denote by Gj(a) probability per unit of time that
an infected individual whose infection-age is a recovers so
that

a) =1 — /O Gy (s)ds

=probability to be still infected for an individual
after a unit time passed since the infection.

Note that the probability density function G; can be
expressed

Gir(a) = ~(a)e i 200
using the recovery rate v used in the PDE model (2).

The interpretations lead to the following identity
i(t,a) = St —a)A(t — a)F(a) 4)

thus, from (3) and (4), we get the following nonlinear
renewal equation

0= [ pla

We then denote by Gr(a) probability per unit of time
that a recovered individual whose recovery-age is a obtains
susceptibility to the disease. Similarly the probability
density function Gr can be expressed as

Gr(a) = d(a)e™ Is 0%,

where ¢ is the rate of waning immunity used in the PDE
model (2). The number of newly susceptible individuals
per unit of time at time t is

/ 5(a

where

S(t —a)A(t — a)F(a)da.

tada—/ S(t —a)A(t — a)G(a)da,

G(a) := /Oa Gr(s)Gr(a — s)ds.

Here G(a) is probability per unit of time that an individual
who infected at time ¢ — a obtains susceptibility again to
the disease at time ¢.

SIRS model (2) is now formulated by only two dynamical
variables: the susceptible population S and the force of
infection A:

%S(t) =— t)+ /Ooo St —a)A(t — a)G(a)da,
(5a)
/ B(a)S(t — a)A(t — a)F(a)da. (5b)

Here we briefly discuss an extension of the model (5) by
incorporating spatial heterogeneity. For example, consider
a metapopulation structure for spatial heterogeneity such
that movement of individuals among nodes can be de-
scribed. If one assumes that infection occurs only in the
node and that no infection occur during the transporta-
tion, formulation of delay equation would be straightfor-
ward. Many systems like (5) can be coupled so that each
of them describes disease dynamics in a node, certainly
paying attention to writing the spatial movement of in-
dividuals among nodes. If one considers infection during
the transportation, the model formulation and analysis
seem to be challenging as there are infinitely many “birth”
states distributed along the edge, see Nakata and Rost
(2015) regarding this topic and for references to papers on
deterministic epidemic models with spatial heterogeneity.

3. EXISTENCE OF AN ENDEMIC EQUILIBRIUM

The basic reproduction number denotes the expected
numbers of secondary infective individuals produced by
a typical infective individual during an entire infectious
period, in a completely susceptible population, which can
be assumed S = 1 without loss of generality. The basic re-
production number is given as the dominant eigenvalue of
a positive linear operator, see Diekmann and Heesterbeek
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