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Abstract: The synchronization of two metronomes on a freely moving platform is examined.
Existence and local stability of the synchronized solutions is studied when the platform
parameters are subject to change, i.e., a numerical continuation and bifurcation software tool
is used to reveal local stability of the in- and/or anti-phase synchronized state as function of
system parameters. It is demonstrated that the platform parameter values have a significant
influence on the stability of the anti-phase synchronized solution.
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1. INTRODUCTION

Synchronization is a well-known phenomenon in physics,
biology, chemistry, and engineering (Pikovsky et al., 2003;
Strogatz, 2003). A few examples are synchronous flashing
of fire flies (Buck, 1988), synchronous contraction of the left
heart ventricle (Maeda, 2004), unconscious synchronized
behavior of monkeys (Nagasaka et al., 2013), and the
biological clock in our brain (Aton and Herzog, 2005). This
internal time-keeper consists of several thousand nerve cells,
and each of them can keep time. Altogether, these clocks
form a perfectly synchronized network with an accuracy
up to a few of minutes per day, especially since each day
the clocks are resynchronized by external stimuli, such as
daylight.

Although synchronization is currently attracting significant
interest, it has been already observed for many ages. One
of the first reports on synchronization came from the Dutch
scientist Huygens (1967). He observed in February of
1665—during a brief illness when he was confined to his
room—that two pendulum clocks hanging on a common
support converge independently of the initial state to a
final state that now is called anti-phase synchronization,
i.e., the pendulums swing in opposite motion with the same
frequency. Inspired by this observation, Huygens conducted
further experiments; however, to the best of our knowledge,
he has not explicitly mentioned in-phase synchronization.

More than three centuries later, Bennett et al. (2002)
experimentally reproduced the observations of Huygens by
using real pendulum clocks and examined the influence of
the coupling strength by changing the mass ratio between
the pendulums and coupling bar. The anti-phase behavior
as described by Huygens was observed as well ‘beating
death’ behavior, i.e., when one of both clocks cease to
run. Likewise, Czolczynski et al. (2011) repeated Huygens
experiments with high-precision pendulum clocks and
observed, depending on the initial conditions, both in-
and anti-phase synchronization.

Another experimental approach used by several authors is to
replace the pendulum clocks with mechanical metronomes.
These simple inexpensive instruments, which produce
regular rhythmic ticks to help musicians maintain a steady
tempo as they play, have all the properties of a self-
sustained oscillator and are, therefore, commonly used
in synchronization experiments. For instance, Pantaleone
(2002) used two metronomes on a very basic experimental
setup consisting of a light wooden board rolling on two
empty soda/beer cans. He points out that independent
of the initial conditions in-phase synchronization was
obtained. Anti-phase synchronization was only achieved
by adding damping to the platform. Inspired by the
work of Pantaleone (2002), Oud et al. (2006) conducted
further research with a more sophisticated setup containing
metronomes. Both in- and anti-phase solutions were
produced; however, robustness of the in-phase solution
remained problematic. More recently, Wu et al. (2012)
noticed a problematic occurrence of the anti-phase solution
and numerically as well experimentally investigated the
relationship between platform damping and anti-phase
synchronization. Their analysis shows that an increase in
platform damping gives rise to a stable anti-phase solution.

The previously mentioned studies focused on the influence
of coupling parameters, whereas one has to consider that
an essential part of the synchronized behavior is due to
the pendulum clock or metronome, and since there is a
broad variation among these, e.g., in pendulum mass,
pendulum length, and type of escapement mechanism, it
is not possible to directly compare experimental results
of different setups. With this in mind, Chakrabarty et al.
(2014) examined the influence of metronome parameters
on the final synchronized state and show that by varying
the damping or frequency of one of the two metronomes, a
transition from in- to anti-phase is possible.

Other authors have contributed to the understanding of the
Huygens’ synchronization phenomenon from a theoretical
point of view. For instance, Jovanovic and Koshkin (2012)
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studied the effect of frame damping on coupled harmonic
oscillators with a van der Pol escapement. As analysis
strategy, they used the Poincaré method, which assumes
small oscillations angles, and as a result, it is not valid for
metronomes. Similarly, Peia Ramirez et al. (2014) studied,
by using the Poincaré method, the effect of coupling bar
stiffness on the final synchronized state. Both by an
analytical and numerical analysis, it is demonstrated that
the coupling bar stiffness has a large effect on the in-phase
synchronized state.

Despite that these and other authors indicate both numeri-
cally and experimentally stable in- and anti-phase solutions
by changing parameters of the setup and/or metronomes,
no one, to the best of our knowledge, has performed a
numerical continuation and bifurcation analysis to reveal
local stability of the in- and/or anti-phase synchronized
state as function of system parameters. Some authors used
simulation-based bifurcation diagrams, see e.g., Kapitaniak
et al. (2012); however, limitations with this method are the
dependence on the initial conditions and inability to find
the unstable solutions. Another approach used by some
authors is an analytical study, see e.g., Kuznetsov et al.
(2007); however, shortcoming with this method is that the
findings are generally very conservative.

This paper, which is inspired by the experimental work
of Tkeguchi (2014), addresses synchronization of two off-
the-shelf metronomes on a freely moving platform, and it
examines the local stability of the synchronized solutions
when only a subset of the system parameters—the platform
parameters—is subject to change. The paper is organized
as follows: Section 2 describes the experimental setup
and measurement method. In Section 3, a model of the
experimental setup is derived and identified. Experimental
results are presented in Section 4. In Section 5, these
experimental observations are compared with simulation
results. Section 6 provides a local stability analysis of the
in- and anti-phase solution when the platform parameters
are subject to change. Finally, Section 7 concludes this
paper with a short discussion of the results.

2. EXPERIMENTAL SETUP

Figure 1 depicts the experimental setup that was used in
this study. It consists of a rectangular platform made of
lightweight foam that is suspended at the corners by four
thin cables. On the platform, two metronomes were placed
next to each other. To detect the phase of both metronomes
and displacement of the platform, a video camera setup
was used. This setup allows contactless measurements and
requires no additional instrumentation on the metronomes
and platform other than placing markers and covering
the metal objects with glossy surface since they can show
grayish reflections. To increase contrast in the image, white
markers were used on a blacked out pendulum surface and
metronome casing. As high-speed video camera, a Casio
Exilim EX-F1 was used at a recording speed of 300 fps.
Post-processing of the videos was performed in MATLAB,
and it involved determining the centers of the markers and
mapping these image coordinates back to world coordinates.

The metronomes used in the experiments were Nikko
Lupina Orange 311 metronomes. The frequency range
setting of these metronomes varies from largo 40 bpm to

Figure 1. Experimental setup with metronomes placed
next to each other. The checkerboard pattern is used
to determine the camera position relative to the setup.

prestissimo 208 bpm, and it can be adjusted by sliding
a small mass, called the bob, along the pendulum. In
this paper, the mass was set to the lowest possible
setting and therefore maximum natural frequency. To
compensate for friction and, thus, dissipated energy during
oscillation cycles, an escapement mechanism is present
inside the metronome. This mechanism, which consists of
a coiled spring, axles, gears, and a toothed wheel, drives
the pendulum every back and forth swing with a short
pulse. During this pulse, a tooth ‘escapes’ and impacts
the pendulum, which makes the typical ticking sound
of a metronome, and since these escapements happen
at a constant interval—twice per cycle—the metronome
oscillates with a constant frequency.

3. MODELING OF THE EXPERIMENTAL SETUP
3.1 Metronome

Various synchronization experiments have shown that the
synchronization phenomenon with metronomes are robust,
see e.g., Pantaleone (2002) and Tkeguchi (2014); hence,
it is not expected that a marginal difference between
model and metronome results in different synchronization
phenomenon. For this reason, the metronome is described
in simplified representation as a viscous damped pendulum
with length ¢ and point mass m. The escapement mecha-
nism is modeled as a pulsating function. This results in
the following equation of motion: (see Kapitaniak et al.,
2012, pp. 12-13)

ml? + d + mglsin 0 = u(9, ), (1)
with the escapement function defined as:
7, if 0, <10 < 6. A6 > 0;

—7,if 0, < |0] < 0. A6 < 0; (2)
0, otherwise,

u(8,0) =

where d is the damping due to the pendulum hinge friction,
g denotes the gravitational acceleration, 7 is the driving
torque of the escapement mechanism, and 65, 6. denote the
angles between which the escapement mechanism operates.

Escapement function (2) is, however, discontinuous and
results in a non-smooth model. Since both the parameter
estimation procedure, and continuation and bifurcation
software tool require a smooth model, the escapement
function is approximated by a smooth function. To do so,
we propose the following escapement function

u(0,6) = 75 (tanh((s0 — 0,)/e) — tanh((s6 — 6.)/¢)) /2,
(3
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