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Abstract: This paper is concerned with synchronization of nonlinear oscillators coupled via a directed
network. It is known that that the synchronization can be achieved by choosing the coupling weights
such that nonzero eigenvalues of the weighted Laplacian are located inside a certain convex region. We
present a design method of the coupling weights which achieves the desired eigenvalue placement based
on the bilinear matrix inequality optimization. The present method improves the previously reported
method by the authors (Hibi and Takaba (2012)) by introducing a more general convex region for the
eigenvalue placement.
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1. INTRODUCTION

Oscillatory phenomena are observed in many areas of natural
sciences, and have been paid much attention from engineering
elds for a long time.

A number of oscillating systems can be modeled as a system of
many nonlinear oscillators mutually interacting through a net-
work. In such a composite system, the oscillators often exhibit
a common dynamic behavior. This phenomena is called a syn-
chronization. Examples include circadian rhythms, heartbeats
and reies ashing in unison (Barrat et al. (2008)).

Mathematical analysis of synchronization of coupled oscilla-
tors has been studied for years. For example, Pecora and Carroll
(1998) derived a sufficient condition for achieving the synchro-
nization under symmetric interactions, in terms of the eigenval-
ues of the Laplacian associated with the network. Nishikawa
and Motter (2006a, 2006b) generalized the above condition
to the case of asymmetric interactions. They also claried the
optimal network structure that maximizes the synchronizability.

The synchronization conditions derived in Pecora and Caroll
(1998), Nishikawa and Motter (2006a, 2006b) give constraints
of the location of the Laplacian eigenvalues into a certain re-
gion on the convex plane. Inspired by those works, the authors
(Hibi and Takaba (2012)) considered the problem of design-
ing coupling weights which synchronize nonlinear oscillators
asymmetrically coupled over a network dened by a directed
graph.Based on the regional pole placement technique (Chilali,
Gahinet and Aplarian (1999)), the authors solved the probem
by placing the eigenvalues of the weighted Laplacian into a
prescribed convex subregion. Noted that, in Hibi and Takaba
(2012), the convex subregion is formed as an intersection of
disk regions centered on the real axis.

The purpose of this paper is to improve the authors’ previous
method mentioned above by introducing a more general convex
subregion. To be more specic, we form the convex subregion
in terms of disk regions cetered at arbitrary points on the
complex plane, while the previous method requires the conters
to lie on the real axis.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give a description of the coupled oscillators via
graph theory and formulate the problems. Section 3 provides
the algorithms for solving the problems numerically. In Sec-
tion 4, a numerical example is presented in order to verify the
effectiveness of the proposed method. The conclusion is given
in Section 5.

Notations:

We use the following notations in this paper.
R+ : non-negative real numbers
Ip : the p × p identity matrix
⊗ : Kronecker product
ρ( · ) : spectral radius of a matrix
Re( · ), Im( · ) : the real and imaginary parts of a complex
number
� · � denotes the Euclidean norm for a vector, and the maximum
singular value for a matrix. The distance between a point x and
a set S is dened by

dist(x, S ) = inf
y∈S
�x − y�.

The vector of ones 1p is dened by

1p := [1 1 · · · 1]� ∈ Rp.
Furthermore, for Hermitian matrices A and B, the inequality
A − B < 0 means that A − B is negative denite.

2. PROBLEM FORMULATION

2.1 System Description

Throughout this paper, we consider a system of n identical
oscillators coupled over a directed graph. Each oscillator, if
isolated, evolves in accordance with the state equation

d xi

dt
= f (xi), i = 1, 2, . . . , n, (1)

where f : Rm → Rm is a C1-function. We assume that this
differential equation admits a limit cycle S 0 with period T > 0.
Recall that a limit cycle is the image of a periodic solution
projected onto the state-space Rm.
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Interactions between the oscillators are performed through a
network which is dened in terms of a directed graph. An
example of such a graph is depicted in Fig. 1. We here introduce
some basic notions from the graph theory (Godsil and Royle
(2001)). A directed graph G is dened as a pair G = (V,E),
whereV = {1, 2, . . . , n} is the node set, E ⊆ V×V is the edge
set. There is a directed edge from the node i to the node j if
(i, j) ∈ E. We denote the set of neighbors of the node i ∈ V by
Ni := { j ∈ V

��� (i, j) ∈ E}.
The weighted adjacency matrix A consists of nonnegative
weights on the edges, i.e.,

�
ai j ≥ 0 if (i, j) ∈ E,
ai j = 0 if (i, j) � E.

We sometimes refer to (G; A) as a weighted directed graph.

As shown in Fig. 1, each node represents each oscillator, and
(i, j) ∈ E implies that the evolution of the oscillator i depends
on the state of the oscillator j. Furthermore, the elements of
A are identied with the coupling weights between oscillators.
We say that the interactions between oscillators are symmetric
if (i, j) ∈ E implies both ( j, i) ∈ E and ai j = a ji. Otherwise,
the interactions are said to be asymmetric.

The weighted Laplacian L = [li j]n×n dened by the following
equation will play a crucial role in this paper.

li j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ai j if i � j,�

j�i

ai j if i = j.

We will denote with L(G) the family of weighted Laplacian
matrices associated with the digraph G.

The most important feature of L is that it always has a zero
eigenvalue with an eigenvector 1n, namely L 1n = 0. We thus
denote the eigenvalues of L as

λ1 = 0��������
n1=1

, λ2, . . . , λ2����������������
n2

, λ3, . . . , λ3����������������
n3

, · · · , λr , . . . , λr��������������
nr

,

where λ1 is the aforementioned zero eigenvalue, the multi-
plicities nk are the sizes of the Jordan blocks associated with
λk , k = 1, . . . , r, and

�r
k=1 nk = n. It is straightforward to

verify that λ1 is an isolated eigenvalue, i.e. n1 = 1. Note that
these eigenvalues can be complex numbers since a weighted
Laplacian for a directed graph is not a symmetric matrix in
general.

1

2

34

5

Oscillator 1

Oscillator 2

Oscillator 3
Oscillator 4

Oscillator5

Fig. 1. Nonlinear oscillators coupled over a directed graph

When the oscillators are coupled over G, the oscillator i inter-
acts with its neighboring oscillators j ∈ Ni, and its dynamics is
expressed as

d xi

dt
= f (xi) −

n�
j=1

ai j(h(xi) − h(x j)), i = 1, 2, . . . , n, .

where the function h : Rm → Rm is of class C1. This equation
can be rewritten as

d xi

dt
= f (xi) −

n�
j=1

li jh(x j), i = 1, 2, . . . , n, (2)

or in short
d x
dt

= F(x) − (L ⊗ Im)H(x) (3)

with

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1

...
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , F : x �→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x1)
...

f (xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , H : x �→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(x1)
...

h(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Synchronization of the coupled oscillators is characterized in
terms of stability of the augmented limit cycle S := { 1n ⊗
s | s ∈ S 0} in Rmn.

Denition 1. Synchronization is achieved for the coupled os-
cillators of (2) if the limit cycle S is asymptotically stable for
(3).

Remark 1. A denition of stability of a limit cycle is given
along the same line as Khalil (1996). For the nonlinear system
(3), the limit cycle S is said to be stable if, for each � > 0, there
exists δ > 0 such that

dist(x(0),S) < δ⇒ dist(x(t),S) < �, ∀t ∈ R+.

Furthermore, S is said to be asymptotically stable if it is stable
and there exists δ > 0 such that

dist(x(0),S) < δ⇒ lim
t→∞ dist(x(t),S) = 0.

2.2 A Sufficient Condition for Synchronization

The goal of this paper is to develop algorithms for designing
coupling weights {ai j}i, j∈V which synchronize the coupled os-
cillators or synchronize them at a specied convergence speed.
For this purpose, we rst review the sufficient synchronization
condition due to Nishikawa and Motter (2006a,2006b).

Recall that any element of S is given by 1 ⊗ s, where s ∈ S 0
is an arbitrary periodic solution of the oscillator dynamics (1).
We also dene

xi(t) = s(t) + ξi(t), i = 1, 2, . . . , n.

Noting d s/dt = f (s) and
�n

j=1 li j = 0, we obtain the
approximate linearization of (2) about s(t) as

dξi

dt
= D f (s(t))ξi −

n�
j=1

li jDh(s(t))ξ j, i = 1, . . . , n, (4)

where D f and Dh are the Jacobian matrices of f and h,
respectively, i.e.

D f (s(t)) =
∂ f (x)

∂x

������
x=s(t)

, Dh(s(t)) =
∂h(x)

∂x

������
x=s(t)

.

We here make the following assumption.

Assumption 1. �Dh(θ)� is bounded with respect to θ ∈ Rm.
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