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1. INTRODUCTION

The delayed feedback control (DFC) has been proposed
by Pyragas to stabilize unstable periodic orbits in chaotic
systems (Pyragas (1992)). The discrete-time version of the
DFC is defined by

xn+1 = F (xn) +Kun, (1)

un = xn−d − xn, (2)

where xn ∈ R
N is the state, F is the function of the

system, K is the feedback coefficient, un is the feedback
input, and d is the delay corresponding to the period of
the unstable periodic orbit. If the stabilization is achieved,
the feedback input un vanishes. This is an advantage of
the DFC, because the control can be achieved by a small
feedback input.

If we consider the DFC of unstable quasi-periodic orbits
(QPOs), there is an inevitable time-delay mismatch be-
cause there is no delay d such that xn−d = xn. However,
we can choose recurrence time d such that the difference
between the current and past states is always small:

|xn−d − xn| < ǫ, (3)

for a small ǫ > 0. We can stabilize the QPO by using
recurrence time d as the delay of the DFC (Ichinose and
Komuro (2014)).

Novičenko and Pyragas (2012) have shown that the DFC
having a small time-delay mismatch can be evaluated by
using the phase reduction method. They constructed a
phase response curve of the DFC with the exact delay and
evaluated the difference of period in the mismatch system.
We have applied their idea of the phase reduction method
⋆ This research was supported by the Aihara Project, the FIRST
program from Japan Society for the Promotion of Science (JSPS),
initiated by CSTP.

to the DFC of QPOs and shown that the mismatch of the
control orbit is consistent with the time-delay mismatch
(Ichinose and Komuro (2014)). However, the problem that
the feedback input cannot vanish remains unsolved. As a
result, there always exists a difference between the orbit
of the DFC and the unstable QPO.

In this work, we propose the method of multiple delayed
feedback control (MDFC) (Ahlborn and Parlitz (2004)) in
which the current state is interpolated by multiple past
states. The MDFC can give a smaller feedback input and
a closer control orbit to the unstable QPO than those of
the single DFC. We apply the MDFC to the sampled-
data control of unstable periodic orbits in continuous-time
systems. We assume that sampling duration τ is rationally
independent of period T of the periodic orbit, i.e., k1τ +
k2T �= 0 for all k1, k2 ∈ Z\{0}. Then, the sampled time
series is quasi-periodic. We show that the MDFC can be
achieved by relatively long sampling duration.

2. MULTIPLE DELAYED FEEDBACK CONTROL

We assume that the control-free system xn+1 = F (xn)
has an unstable QPO defined on an invariant closed curve.
The rotation number ω is an important invariant of QPOs,
because a QPO is topologically conjugate to the irrational
rotation (MacKay (1988)):

θn+1 = θn + ω, (4)

where θn ∈ S is the phase of the circle S = R/Z. Let x̃n

be the unstable QPO in the system. By the topological
conjugacy, the QPO is associated with the irrational
rotation via the homeomorphism ψ:

x̃n = ψ(θn). (5)

We consider the single DFC (1) and (2) of the unstable
QPO. We assume that the stabilization of the QPO is
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achieved, i.e., xn = x̃n. The phase of the past state xn−d

is defined by

θn−d = θn − dω. (6)

If ω is irrational, there exists no delay d such that dω ∈ Z.
Therefore, θn−d �= θn always holds and the feedback input
never vanish:

un = xn−d − xn = ψ(θn − dω)− ψ(θn) �= 0, (7)

even if the achievement of the control is assumed. Our
idea is that we construct the interpolation of ψ by using
multiple past states and approximately determine ψ(θn).

We use the Lagrange polynomial as the interpolation
method. Let (ηi, νi) (i = 1, 2, . . . ,M) be given data of the
pairs such that νi = ψ(ηi). The Lagrange polynomial L is
defined as follows:

L(θ) =

M
∑

i=1

νifi(θ), (8)

where fi is the coefficient defined by

fi(θ) =

M
∏

j=1,j �=i

θ − ηj
ηi − ηj

. (9)

By a certain set of (ηi, νi), the Lagrange polynomial can
estimate the homeomorphism ψ: ψ(θ) ≈ L(θ).

We here estimate ψ(θn) by using multiple past states. We
assume that a set of multiple delays D = {d1, d2, . . . , dM}
is given. Then, ηi and νi are assigned as follows:

ηi = θn−di
= θn − diω, νi = x̃n−di

. (10)

We can rewrite the coefficient fi at θn by

fi(θn) =

M
∏

j=1,j �=i

[θn − θn−dj
]

[θn−di
− θn−dj

]
=

M
∏

j=1,j �=i

[djω]

[djω − diω]
,(11)

where [·] is the operator translating S to R:

[θ] =

{

θ − ⌊θ⌋ if θ − ⌊θ⌋ < 0.5
θ − ⌊θ⌋ − 1 otherwise

, (12)

where ⌊·⌋ is the floor function. It should be noted that
fi(θn) is independent of n. Therefore, the Lagrange poly-
nomial estimating ψ(θn) can be shown by the weighted
sum of the past states:

ψ(θn) ≈ L(θn) =
M
∑

i=1

cix̃n−di
, (13)

where ci is the constant coefficient:

ci =

M
∏

j=1,j �=i

[djω]

[djω − diω]
. (14)

Using the Lagrange polynomial, we define the feedback
input un of the MDFC:

un =

M
∑

i=1

cixn−di
− xn. (15)

3. SAMPLED-DATA CONTROL OF
CONTINUOUS-TIME PERIODIC ORBITS

We consider the continuous-time system defined by

dx

dt
= G(x), (16)

and obtain sampled data with the sampling duration τ .
Then, the sampled-data system can be shown as the
discrete-time system:

x(tn+1) = F (x(tn)) = x(tn) +

tn+1
∫

tn

G(x)dt, (17)

where tn+1 − tn = τ for all n. We assume that the
continuous-time system has an unstable periodic orbit
with period T . The sampled time series of the continuous-
time periodic orbit is quasi-periodic, if τ and T are
rationally independent of each other. In this case, we can
immediately determine the rotation number of the QPO:

ω =
τ

T
. (18)

The rational independence between τ and T implies that
ω is irrational. Therefore, we can apply the MDFC to this
sampled-data system:

x(tn+1) = F (x(tn)) + u(tn), (19)

u(tn) =

M
∑

i=1

cix(tn−di
)− x(tn). (20)

Note that the feedback input is an impulsive signal in the
continuous-time system:

dx

dt
= G(x) + δ(t− tn)u(tn), tn ≤ t < tn+1, (21)

where δ is the delta function.

We apply the MDFC to the Rössler system:

dx

dt
= −y − z, (22)

dy

dt
= x+ ay, (23)

dz

dt
= b+ z(x− c). (24)

We fix the parameters at (a, b, c) = (0.2, 0.2, 5.7) where
the system is chaotic. We estimate an unstable periodic
orbit by using the continuous-time version of the original
DFC. We choose an unstable periodic orbit with period
T = 11.759. We fix the sampling duration at τ = 0.5.
Then, there are 24 sampling points a period on average.
The rotation number is ω ≈ 0.0425. The feedback input is
given only to the state y:

K =

(

0 0 0
0 k 0
0 0 0

)

. (25)

In Fig. 1, we compare the control orbit of the single DFC
and the unstable periodic orbit. In this case, there is
only a delay and we choose d = 24 that is equivalent to
the average sampling points for a period. We show these
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