
Contents lists available at ScienceDirect

Journal of Electrostatics

journal homepage: www.elsevier.com/locate/elstat

Numerical investigation of electroconvection induced by strong unipolar
injection between two rotating coaxial cylinders

Philippe Traoréa,∗, Jian Wua, Christophe Loustea, Francisco Duran Olivenciaa, Pedro A. Vázquezb,
Alberto T. Pérezc

a Institut PPRIME, Département Fluide-Thermique-Combustion, Boulevard Pierre et Marie Curie, BP 30179, 86962, Futuroscope-Chasseneuil, France
bDepartamento de Física Aplicada III, Universidad de Sevilla, ESI, Camino de los Descubrimientos s/n, 41092, Sevilla, Spain
c Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, Facultad de Física, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain

A R T I C L E I N F O

Keywords:
Electrohydrodynamics
Couette shear flow
Numerical analysis
Dielectric liquid
Charge injection
Nnular electroconvection

A B S T R A C T

In this paper, the interaction between a Couette shear flow and an electroconvective motion induced by an
unipolar injection between two-coaxial cylinders is numerically investigated. A flow is generated by two
counter-rotating coaxial cylinders inducing a shear flow. Space charges are injected in the flow through a me-
tallic electrode placed on the inner cylinder and brought to a given potential. Transient numerical simulations
have been carried out to investigate the structure of the induced flow. The entire set of the coupled Navier-Stokes
and EHD equations is solved using an efficient finite volume technique. The behaviour of the flow subjected to an
applied voltage between the two electrodes is analyzed and time evolution of the charge density distributions is
presented. The interaction between the convective motion induced by space charge injection and the mainstream
flow, emphasizes the appearance of periodic counter-rotating electroconvective cells. The electroconvective cells
are convected in the annular space by the azimuthal fluid velocity. From the stability point of view the bi-
furcation diagram is very similar to the one obtained in the case when Re=0. We observe a threshold value Tc of
the instability parameters T above which the electroconvective instability initiates. A non-linear criterion Tf
under which the electro-convective motion is suppressed is also found. When increasing the Reynolds number
the flow induced by the two rotating cylinders has a sweeping effect on the charge density distribution.
Consequently the instability parameter T must be drastically increased to allow the electroconvective instability
to develop. For Re=10 a subcritical instability characterized by an hysteresis loop and therefore a linear and
non-linear criteria, Tc and Tf respectively, are determined. While for Re=0, Tc=122.42 and Tf=86.5, for
Re=10 we numerically found that Tc=802 and Tf=722. The magnitude of the linear and non-linear criteria
are directly linked to the value of the Reynolds number.

1. Introduction

Considerable interest has been shown in recent years in fluid motion
driven by Coulomb force which arises in many natural situations and
industrial processes. The resulting flow which occurs when an electric
field is applied across a dielectric liquid layer containing electric
charges, have received much attention by the scientific engineering and
industrial communities. In most of these situations the electric field is
the cause of the movement of the flow itself by electroconvection. In
this study we examine the effect of a circular Couette shear flow on a
radially Coulomb driven electroconvection in a two-dimensional an-
nular fluid. Numerical simulations are carried out to investigate elec-
troconvective phenomena in a dielectric liquid confined between two
counter-rotating coaxial cylinders. In an unsheared case (absence of

rotational motion from the two cylinders) strong unipolar injection of
ions either from the inner or outer cylinder leads to the development of
electroconvective instability [1–3]. Similarly as in the case of two
planar electrodes, the flow is characterized by the development of a
subcritical bifurcation in the finite amplitude regime [4–6]. In this si-
tuation, a linear stability criterion Tc and a nonlinear one Tf that cor-
respond to the onset and stop of the flow motion, respectively, are
linked with an hysteresis loop [3]. When the cylinders are set into an
angular motion, this annular geometry and the Couette shear induces
the development of another instability: The Taylor-Couette instability.
However the flow between concentric cylinders is only unstable for 3D
geometry and 2D Couette flow is by itself stable [7]. In this geometry
the shearing effect induced by the angular motion of the cylinders does
not lead to the development of a second instability and thus no
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competition between electroconvective and Taylor-Couette instabilities
could be expected. However several interesting phenomena and stabi-
lizing effect are observed when pure electroconvection is superimposed
with a Couette shear flow. The most important effect of the Couette
flow is in fact to suppress the onset of electroconvection [8]. In Ref. [9]
the authors have experimentally investigated the bifurcation that arises
in an electrically-driven convection layer submitted to an imposed
shear due to the rotation of two coaxial cylinders. They showed that this
bifurcation could be supercritical or either subcritical, depending on the
radii ratio of the two cylinders or on the Reynolds number based on the
azimuthal velocity. They have successfully demonstrated that the flow
could remain two-dimensional in this geometrical configuration. The
purpose of this article is to investigate numerically how and under
which conditions the shear flow interacts with the development of the
subcritical electroconvective instability. In particular we shall de-
termine how the linear and non-linear critical values Tc and Tf re-
spectively are affected by the Reynolds number based on the azimuthal
velocity: =Re ρ R ω d

μ
0 0 0

0
where ω0 is the angular velocity of the inner

cylinder, and = −d R R1 0 where R0 et R1 are respectively the radius of
the inner and outer cylinders. ρ0 and μ0are the fluid density and fluid
dynamic viscosity respectively. In the following section we state the
problem and its governing equations. We shall describe too the nu-
merical method used in this study. The results are discussed in Section
3. Finally, a conclusion is summarized in section 4.

2. Problem formulation and numerical method

2.1. Governing equations

The system under consideration in this article is a dielectric liquid
layer enclosed between two concentric cylinders of radius R0 and R1

respectively (Fig. 1). The layer of a perfectly incompressible and in-
sulating liquid is subjected to an electrical potential difference

= −ΔV V V0 1 which will induce a radial electric field
⎯→⎯
E . Under the

action of this electric field and due to complex electrochemical pro-
cesses at the emitter electrode electric charge injection into the bulk
will occur. We consider the case of unipolar injection, which means that
ions are injected from one electrode only. The emitter electrode will be
the inner cylinder and an amount of charge q0 is injected into the bulk.
The collector electrode is thus the outer cylinder which is grounded.
The inner cylinder has an angular velocity ω0and the outer one, an
angular velocity ω1 See Fig. 1.

The complete formulation of a dielectric liquid subjected to electric
field is governed by the following EHD equations [10]. We consider the
limit case of homogeneous and autonomous unipolar injection, which
means that the charge injection arises from one electrode and the
density of injected charges is always constant and not related to the

electric field [11].
The problem is formulated considering the usual hypotheses of a

Newtonian and incompressible fluid of dynamic viscosity μ0and density
ρ0, governed by the Navier-Stokes and Electo-Hydro-Dynamic (EHD)
equations as follows:

∇⋅→ =u 0 (1)
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where →u is the fluid velocity, p͠ is the modified pressure which includes
the contribution from the electrostriction force term [11]. q is the vo-
lumic charge density, K and εare respectively the ionic mobility and the
permittivity of the liquid in consideration.

For a sake of universal description for such studies it is particularly
convenient to work with dimensionless equations. In order to transform
the last set of equations into a dimensionless form we introduce the
following dimensionless quantities denoted with a star:
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This leads to the following set of dimensionless parameters:
= −

⥄T ε V V
μ K
( )0 1

0 0
is the electrical Rayleigh number which accounts for

the Coulomb and viscous forces. =C q d
ε ΔV

0
2
is a dimensionless measure of

the injection strength. = ( )M K
ε

ρ
1 1/2

0 0
accounts for the electro-

hydrodynamic properties of the liquid.
=Re ρ u d

μ
0 0

0
is the classical Reynolds number.

Several choices for the characteristic velocity u0to scale the velocity
field are possible. In this study the most obvious choice seems to use the
azimuthal velocity of the inner cylinder =u R ω0 0 0. The Reynolds
number is thus: =Re ρ ω R d

μ
0 0 0

0

For convenience we shall, also define =R T
M2 which is known as the

electrical Reynolds number.
If we drop the star indices for a sake of clarity, the set of di-

mensionless equation becomes:
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2.2. Numerical method

The numerical procedure used to solve the entire set of coupled
Navier-Stokes and EHD equations is similar to the one already ad-
dressed in previous papers [11,12], and thus will not be discussed
further more here. The set of coupled equations (6)–(9) are integrated
with a second order in space and in time finite volume method [13].
The boundary conditions are depicted in the Fig. 2. All these numericalFig. 1. Sketch of the physical domain.
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