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A B S T R A C T

For ellipsoidal objects, the complex conductivity of the suspension depends on the objects' axis ratio and or-
ientation. It can be described by analytical equations that were derived by combining the influential radius
approach with the mixing equation of Maxwell and Wagner. Here, we consider conductive or insulating
homogeneous spheroids, with their symmetry axes being oriented in parallel, in perpendicular or at random with
respect to the external field. Considerations show that the field-induced orientations of both nonconductive and
conductive objects will result in a reduction of the suspension's impedance and an increased dissipation of
electrical energy.

1. Introduction

Impedance characterization is a common task in physics, chemistry,
colloid sciences and biology [1–9]. The complex (marked by lower
dash) specific impedance ϱ in Ωm or its reciprocal parameter, the ef-
fective complex conductivity (admittance) σ in S/m of homogeneous
gaseous, liquid or solid media, is changed in the presence of objects or
inclusions [10,11]. Whereas the conductivity of media is reduced by
objects made of insulating material, such as gas, oil or plastics, their
conductivity is increased in the presence of highly conductive objects,
such as metallic particles. For a given volume fraction of the objects, the
efficiency at which the objects decrease or increase the impedances of
suspensions depends on the objects' shape and orientation with respect
to the external electric field. It can be conceived that reorientation will
induce the highest impedance alterations for disk- or needle-shaped
objects, which are close to their limiting shapes. Accordingly, the lim-
iting shapes suggest criteria for the efficient use of the objects' material
to alter the impedance of suspensions. The limiting shape cases and the
limiting ratios of the relative polarizabilities of the external medium
and the objects may be of technological relevance, e.g., for the char-
acterization of emulsions [12,13], in electrorheological applications
[14–20], for particles or droplets in gas or air streams (see air/fuel
ratio), for particles in waste gases or gas bubbles in liquids [21,22], or
for fluids in sand [23,24].

Maxwell [10] was the first to derive an expression for the static
resistance of a dilute suspension of monodisperse shelled spheres.
Wagner [11] introduced complex specific conductivities into Maxwell's

theory and simplified the expression by using a Taylor-series develop-
ment around zero object concentrations. The obtained mixing equation
has been expanded to the impedance of suspensions of single- and
multi-shell ellipsoidal objects [8,25–29]. Currently, the term “Maxwell-
Wagner dispersion” is used in a more general way for geometrically
structured dielectric models.

In the 1920s, chemists used the spherical geometry to consider the
influence that external electric fields have on the behavior of molecules
in solutions. The molecules were assumed to occupy an otherwise
empty spherical cavity corresponding to their gyroscopic radii. Later,
depolarizing factors were introduced to describe the degree of the local
field amplification inside spherical and ellipsoidal cavities [30]. After
explicit expressions were derived for the depolarizing factors of
spheroidal objects [31], expressions for the general ellipsoidal shape
were found [32–34]. These expressions have later been applied to
model the polarization of ellipsoidal single- and multi-shell objects
suspensions [35,36].

Our influential radius approach provides a more electro-technical
view at the depolarizing factors because it describes the local field
amplification inside an ellipsoidal cavity in a direct manner and allows
the electric and geometric problems to be separated for objects of the
general ellipsoidal shape. Influential radii have been successfully ap-
plied in the modeling of AC-electrokinetic effects [37–39], the induced
transmembrane potential of biological cells [37,40,41] and the im-
pedance of suspensions [28,39].

In this manuscript, the influential radius approach is used to con-
sider the impedance of suspensions of oriented and randomly oriented
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objects of the general ellipsoidal shape. For the polarization of spher-
oidal objects (i.e., ellipsoids of rotation), closed analytical solutions can
be derived [40]. These solutions can be approximated by simplified
equations [42] to avoid the use of complex equations for the depolar-
izing factors. The obtained equations permit the easy derivation of so-
lutions for the limiting shapes of flat oblate spheroids (disks), spheres,
or long prolate spheroids (needles). The limiting impedance cases for
insulating and highly conductive spheroids of oblate and prolate shapes
are summarized in the two appendices.

2. The model

2.1. Object geometry, depolarizing factors and influential radii: separating
the electrical and geometric models

For an ellipsoidal cavity or object, depolarizing factors (n n n, ,a b c)
are defined along the three principal semiaxes: a b c, , and . The sum of
the depolarizing factors is always unity [30–34]:

+ + =n n n 1a b c (1)

The local field is constant inside homogeneous objects confined by
surfaces of the second degree. Inside vacuum cavities or homogeneous
objects of very low polarizability (negligible electric susceptibility), an
external field (or field component) E a

0 parallel with the semiaxis a of the
object induces the local field (or local field component) [38,43]:
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Please note that for simplicity, the vector notation was not used.
Inside spherical cavities with = = =n n n 1/3a b c , the local field Eloc
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along semiaxis a is increased by a maximum factor of =− n
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respect to the undisturbed homogeneous external field E a
0 . In the el-

lipsoidal case, the maximum potential of Ψ a at the pole of semiaxis a is
(Fig. 1)
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1 a
inf being the constant local field inside

the homogeneous object, the influential radius, and the relative influ-
ential radius (field amplification factor) along semiaxes a, respectively
[42]. Along each principal semiaxis, the influential radii are the dis-
tances from the object's respective symmetry planes to those un-
disturbed equipotential planes that are just touching the respective pole
of a “vacuum” object of the identical shape [38]. The properties of such
objects are approached for |σi|«|σe|, with = +σ σ jωε εi i i0 and

= +σ σ jωε εe e e0 being the complex specific conductivities of the in-
ternal (subscript i) and external (subscript e) media.

Fig. 1 illustrates the relations for the general AC case, in which the
induced potentials and local fields may be out-of-phase with the ex-
ternal field. A reference potential of 0 V can be assumed at the sym-
metry plane of the object without limitation in generality. Please note
that the maximum possible DC (or AC) potentials and local fields are in-
phase with the inducing fields. For a more detailed consideration,
please see Ref. [39].

From Eqs. (1) and (3), for the inverse relative influential radii fol-
lows [38]:
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2.2. The Clausius-Mossotti factor

For a homogeneous ellipsoidal object of volume

=V π abc4
3

, (5)

the component ma of the induced dipole moment along semiaxis a is
proportional to the external field component E a

0 and the permittivity
ε εe 0 of the external medium:
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The complex Clausius-Mossotti factor,
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describes the frequency dependence of ma [34]. As an alternative to the
(effective) media properties, “measuring parameters” can be used:
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in the form of normalized differences of the constant local field Eloc
a in

the presence and the undisturbed field E a
0 in the absence of the object

[34] or of the potentials at pole a in the presence (Ψ a) and absence (Ψ a
0 )

of the object [38].
Depending on the effective electrical properties of external medium

and object, the actual potentials at the three poles can be calculated
from simple voltage dividers between the maximum potentials of
a Einf

a
0 , b Einf

b
0 , or c Einf

c
0 and 0 V at the three symmetry planes of the

object (Fig. 1). Each divider is formed by geometric elements with the
electric bulk properties of the object (subscript i) and the external
medium (subscript e). Along axis a, the two elements possess the
complex impedances Zi

a and Ze
a, which can be described by resistor-

capacitor (RC) pairs for most of the media. The RC properties are de-
termined by the geometry, the specific conductivity and the permit-
tivity of the bulk media.

In the general case, the attenuation of the divider is frequency-de-
pendent, generating the following potential
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at pole a [37]. The impedances of the two elements are

= = −Z a
σ

A Z a a
σ

Aandi
a

i
e
a

e

inf

(10)

Please note that homogeneous objects resemble the so-called
Maxwell-equivalent bodies for objects with confocal shells [10] and
frequency-dependent effective polarizabilities [11,38,44].

2.3. Limiting cases for the Clausius-Mossotti factor

The pole potentials exhibit two limiting cases. At pole a, these pole
potentials are =Ψ a Eloc

a a
inf 0 and =Ψ V0a for the limiting cases of

|Zi
a|»|Ze

a| (nonconductive, low polarizable or vacuum object) and

Fig. 1. Sketch illustrating the potentials induced by the external field component E a
0 at

pole a of a homogeneous ellipsoidal object with the semiaxes a, b, and c . The potentials
Ψ a and Ψ a

0 are induced with respect to the reference potential of 0 V at the symmetry
plane of the object in the presence and absence of the object. In the general case, the
complex potential =Ψ aEa

loc
a is given by the effective constant (local) field Eloc

a inside

Maxwell's equivalent body.
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