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Abstract: Energy efficiency is firstly considered into the control of overhead cranes. Based on
the model of crane system, energy consumption as well as operational safety is formulated in an
optimal control problem. The optimal control is used to search optimal trajectories of velocity
and acceleration for minimizing energy consumption. Existing related work mainly focused on
reducing transportation time and swing, but trajectory in this paper focuses on increasing energy
efficiency of transportation while satisfying practical and physical constraints. Model predictive
control (MPC) is then proposed to track optimal trajectories in real-time. As a result, the actual
trajectories can match the reference trajectories with small errors when external disturbances
exist. In the simulation, it can be shown that the proposed control approach can improve energy
efficiency of overhead cranes robustly.
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1. INTRODUCTION

Due to high payload capacity, good operational flexibil-
ity and transportation efficiency, overhead cranes have
been widely used in many industrial fields, such as sea
ports, construction sites, manufacturing plants and facto-
ries (Peng et al., 2012; Ngo and Hong, 2012). Regardless
of the type of overhead crane, each crane always has a
similar fundamental structure that can be described as a
trolley-pendulum system, that consists of a trolley, a sup-
porting frame and a rope connecting the trolley with the
payload. The crane system has one control input (trolley’s
actuating force) and two system variables to be controlled
(trolley’s position and payload’s swing angle). It is difficult
to control this so-called underactuated mechanical system
that has fewer independent control inputs than degrees
of freedom. Therefore, the automatic control of crane has
attracted much interest from researchers in areas of me-
chanics and control.

Under the assumption of small payload swing, the nonlin-
ear model of crane can be linearized around its equilibrium
points, and then linear control approaches can be used on
the simplified linear system. Many linear control methods
have been applied to overhead cranes, including feedback
control (Hekman and Singhose, 2006), input shaping (feed-
forward control) (Singhose et al., 2000; Garrido et al.,
2008), optimal control (Moon et al., 1996; Piazzi and
Visioli, 2002; Terashima et al., 2007). Time efficiency is the
main objective of crane control that is usually considered
in previous work (Chang and Wijaya Lie, 2012; Sun et al.,
2012a). In Moon et al. (1996), time optimal control the-
ory has been evaluated on the bang-bang control system
of cranes. In Piazzi and Visioli (2002); Terashima et al.
(2007), time optimal trajectories have been designed for
continuous system of cranes subject to the swing con-
straint.

Two important issues have been neglected, i.e., energy effi-
ciency and safety, which turn out to be significantly urgent
when a large number of cranes have been equipped in some
international industrial fields. To the best of our knowl-
edge, little work has been done to minimize the swing risk
while most work only considered the swing as a constraint
of the control problem. The total energy consumption,
has seldom been optimized in crane control, because the
relation between energy consumption and control sequence
is still vague. In this paper, energy efficiency as well as
safety will be considered in the proposed control approach,
that includes trajectory planning and tracking. Optimal
trajectories in terms of energy efficiency and safety are
planned by the optimal control method. As references,
these optimal trajectories will be tracked in real time by
model predictive control (MPC).

The reminder of this paper is organized as follows. Section
2 presents the dynamic model of overhead cranes. The
discrete-time model is deduced in Section 3. Section 4
illustrates our control approach. Section 5 shows results
of numerical simulation. Conclusion is given at last.

2. DYNAMIC MODEL OF OVERHEAD CRANES

The structure of an overhead crane can be illustrated
as shown in Figure 1, where the trolley moves on the
horizontal bridge and the payload is connected with a
constant-length rope. x(t), θ(t) and F (t) denote the trol-
ley’s position, the payload’s swing angle and overall force
on the trolley respectively. In this paper, air resistance as
well as stiffness and mass of the rope is neglected and the
load is considered as a point mass. Moreover, as this study
only focuses on the control of horizontal transportation,
hoisting and lowering of payload are not considered. Then
the overhead crane system with constant rope length can
be described as follows:

(M +m) ẍ+ml cos θθ̈ −ml sin θθ̇2 = F, (1)
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ml2θ̈ +ml cos θẍ+mgl sin θ = 0, (2)

where M and m denote masses of the trolley and the
payload, respectively. l is the length of the rope; g is the
gravitational acceleration. The overall force F is composed
of the actuating force Fa and the friction Fr as

F = Fa − Fr, (3)

Fr ∝ (M +m)g, (4)

Motivated by the friction models in Makkar et al. (2007);
Sun et al. (2012b), this paper employs the friction model
as

Fr = (kr1 tanh ẋ/ξ + kr2|ẋ|ẋ)(M +m)g, (5)

where kr1, kr2 and ξ are friction-related coefficients that
can be determined by offline regression of historical data.

The crane dynamics consist of the actuated part (Eq. (1))
and the underactuated part (Eq. (2)). The latter part is
the system kinematics that defines the coupling behavior
between the trolley’s acceleration ẍ(t) and the payload’s
swing angle θ(t). The main difficulty in controlling the
overhead crane lies in handling of the coupling behavior
between the swing and horizontal motion. When the swing
angle is small enough (θ(t) < 5◦), the kinematic equation
(2) can be linearized with the approximations of cos θ ' 1
and sinθ ' θ. The approximated linear kinematics can be
obtained as

lθ̈ + ẍ+ gθ = 0. (6)
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Fig. 1. Two-dimensional overhead crane system

In the evaluated time interval [0, T ], the crane is required
to arrive at the destination without residual swing. There-
fore, several principles must be satisfied according to the
physical and practical situations in crane control.

Principle 1 : The trolley reaches the desired location pd at
the end of the period. The final states must ensure that the
trolley is static with no swing and that it can be lowered
immediately as

x(T ) = pd, ẋ(t) = 0, θ(T ) = 0, θ̇(T ) = 0. (7)

Principle 2 : During the horizontal transportation, the
velocity and acceleration of the trolley must be limited
in certain ranges as{

0 ≤ ẋ(t) ≤ vm, t ≤ T
|ẍ(t)| ≤ am, t ≤ T , (8)

where vm and am are the permitted limits of velocity and
acceleration, respectively.

Principle 3 : The payload swing during the transportation
must be limited within a safe range as

|θ(t)| ≤ θm, t ≤ T, (9)

where θm is the permitted maximum of swing amplitude.

Principle 4 : The jerk (defined as the time derivative of
acceleration j(t) =

...
x (t)) must be limited to a reasonable

range to satisfy the mechanical constraint and to prolong
the motor’s lifetime.

|j(t)| ≤ jm, t ≤ T (10)

where jm is the permitted maximal jerk in the horizontal
transportation.

3. DISCRETE MODEL OF OVERHEAD CRANES

In our proposed approach, the sequence of control input is
[Fa(1), Fa(2), . . . , Fa(N)]T , where Fa(n) is the actuating
force at the nth sampling period and N is the total
number of samples in the planning period T . Therefore,
the continuous system need be discretized by a sampling
period t0. The discrete model of overhead cranes can be
formulated as Eq. (11) and (12).

(M +m) a(n)+ml cos θ(n)θ̈(n)−ml sin θ(n)θ̇(n)
2

= F (n),
(11)

lθ̈(n) + a(n) + gθ(n) = 0, (12)

where N = T/t0 and n = 1, . . . , N ; a(n) and F (n)
represent acceleration and overall force at the nth sample
respectively. θ(n), θ̇(n) and θ̈(n) are measured swing angle,
swing velocity and swing acceleration at the nth sample.
At the period [n−1, n), the overall force F (n) is composed
of the actuating force Fa(n) and the friction Fr(n) as

F (n) = Fa(n)− Fr(n), (13)

where the friction Fr(n) can be formulated similarly with
Eq. (5) as

Fr = [kr1 tanh ẋ(n)/ξ + kr2|ẋ(n)|ẋ(n)](M +m)g. (14)

In this discrete model, we denote the vector of acceleration
as a (a(n) = ∆2x(n)), and denote the vector of velocity
as v (v(n) = ∆x(n)). Suppose that the initial position is
x(0), the initial velocity is v(0), the initial acceleration is
a(0), the initial swing angle is θ(0), and the initial swing

velocity is θ̇(0). Given an vector of acceleration a , the
velocity v and the displacement x can be expressed as{

v = v0 + Aat20
x = x 0 + bv(0)t0 + Axat

2
0
, (15)

where

v0 = [

N︷ ︸︸ ︷
v(0), ..., v(0)]T , (16)

x 0 = [x(0), ..., x(0)]T , (17)

b = [1, 2, . . . , N ]T , (18)
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