
A Control Approach for Performance of
Big Data Systems

M. Berekmeri ∗,∗∗,∗∗∗∗,∗∗∗ D. Serrano ∗∗,∗∗∗∗,∗∗∗

S. Bouchenak ∗∗,∗∗∗∗,∗∗∗ N. Marchand ∗,∗∗∗∗,∗∗∗ B. Robu ∗,∗∗∗∗,∗∗∗

∗ GIPSA-lab, BP46 38402 Grenoble, France
email: {mihaly.berekmeri, nicolas.marchand, bogdan.robu}@gipsa-lab.fr

∗∗ Distributed Computer Systems Group, LIG, BP53 38402 Grenoble,
France

email: {damian.serrano, sara.bouchenak}@imag.fr
∗∗∗ CNRS, France

∗∗∗∗ Univ. Grenoble Alpes, F-38402 Grenoble, France

Abstract: We are at the dawn of a huge data explosion therefore companies have fast
growing amounts of data to process. For this purpose Google developed MapReduce, a parallel
programming paradigm which is slowly becoming the de facto tool for Big Data analytics.
Although to some extent its use is already wide-spread in the industry, ensuring performance
constraints for such a complex system poses great challenges and its management requires a
high level of expertise. This paper answers these challenges by providing the first autonomous
controller that ensures service time constraints of a concurrent MapReduce workload. We
develop the first dynamic model of a MapReduce cluster. Furthermore, PI feedback control is
developed and implemented to ensure service time constraints. A feedforward controller is added
to improve control response in the presence of disturbances, namely changes in the number of
clients. The approach is validated online on a real 40 node MapReduce cluster, running a data
intensive Business Intelligence workload. Our experiments demonstrate that the designed control
is successful in assuring service time constraints.

Keywords: disturbance rejection, linear control systems, control for computers, cloud
computing, Big Data

1. BACKGROUND AND CHALLENGES

As we enter in the era of Big Data (Big Data refers to a
collection of data sets so large and complex that it becomes
difficult to process using traditional database management
tools), the steep surge in the amount data produced brings
new challenges in data analysis and storage. Recently, there is a
growing interest in key application areas, such as real-time data
mining, that reveals a need for large scale data processing under
performance constraints. These applications may range from
real-time personalization of internet services, decision support
for rapid financial analysis to traffic controllers. The steep
increase in the amount of unstructured data available therefore
calls for a shift in perspective from the traditional database
approach to an efficient distributed computing platform de-
signed for handling petabytes of information. This imposes the
adaptation of internet service providers to implementations on
distributed computing platforms and one way to achieve this is
to adopt the popular programming model called MapReduce.
Its success lies in its usage simplicity, its scalability and fault-
tolerance. MapReduce is backed and intensively used by the
largest industry leaders such as Google, Yahoo, Facebook and
Amazon. As an illustration, Google executes more than 100.000
MapReduce jobs every day, Yahoo has more the 40.000 comput-
ers running MapReduce jobs and Facebook uses it to analyse

? This work has been supported by the LabEx PERSYVAL-Lab
5ANR-11-LABX-0025.

more then 15 petabytes of data. The MapReduce programming
paradigm was initially developed by Google in 2008 as a general
parallel computing algorithm that aims to automatically handle
data partitioning, consistency and replication, as well as task
distribution, scheduling, load balancing and fault tolerance (see
Dean and Ghemawat (2008) for further details).

In the same time, there is a growing interest of computer science
researchers in control theory to automatically handle configura-
tions of complex computing systems. Recent publications in the
field of continuous time control of computer systems show the
emergence of this new field for automatic control. For instance,
continuous time control was used to control database servers
(Malrait et al., 2009) using Lyapunov theory, web service sys-
tems (Poussot-Vassal et al., 2010) or HTTP servers (Hellerstein
et al., 2004) using a ”blackbox” approach. It must be underlined
that this field is also emerging in the field of discrete event
systems, see Rutten et al. (2013) for a survey.

The aim of this paper is to propose a control based approach to
tune MapReduce. MapReduce is a way to implement internet
programs and to run them in a parallel way on many computers
in the cloud (called nodes). Although MapReduce hides most
of the complexity of parallelism from users 1 , deploying an ef-
ficient MapReduce implementation still requires a high level of
expertise. It is for instance the case when tuning MapReduce’s

1 By MapReduce users we mean companies wishing to use MapRe-
duce for their own applications, typically internet services providers.

Proceedings of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

978-3-902823-62-5/2014 © IFAC 152



configuration as underlined in (White, 2012; Herodotou and
Babu, 2011) or to assure performance objectives as noted in
(Xie et al., 2012). By performance objective, we usually mean
the service time, that is the time needed for the program
running on the cloud to serve a client request. For a user to
run a MapReduce job at least three things need to be supplied
to the framework: the input data to be treated, a Map function,
and a Reduce function. From the control theory point of view,
the Map and Reduce functions can be only treated as black
box models since they are entirely application-specific, and we
assume no a priori knowledge of their behavior. Without some
profiling, no assumptions can be made regarding their runtime,
their resource usage or the amount of output data they produce.
On top of this, many factors (independent of the input data and
of the Map and Reduce functions) influence the performance
of MapReduce jobs: CPU, input/output and network skews
(Tian et al., 2009), hardware and software failures (Sangroya
et al., 2012), Hadoop’s (Hadoop is the most used open source
implementation of MapReduce) node homogeneity assumption
not holding up (Zaharia et al., 2008; Ren et al., 2012), and
bursty workloads (Chen et al., 2012). All these factors influ-
ence the MapReduce systems as perturbations. Concerning the
performance modelling of MapReduce jobs, the state of the art
methods use mostly job level profiling. Some authors use sta-
tistical models made of several performance invariants such as
the average, maximum and minimum runtimes of the different
MapReduce cycles (Verma et al., 2011). While others employ a
static linear model that captures the relationship between job
runtime, input data size and the number of map, reduce slots
allocated for the job (Tian and Chen, 2011). In both cases the
model parameters are found by running the job on a smaller
set of the input data and using linear regression methods to
determine the scaling factors for different configurations. A
detailed analytical performance model has also been devel-
oped for off-line resource optimization, see Lin et al. (2012).
Principle Component Analysis has also been employed to find
the MapReduce/Hadoop components that most influence the
performance of MapReduce jobs (Yang et al., 2012).
It is important to note that all the presented models
predict the steady state response of MapReduce jobs
and do not capture system dynamics. They also assume
that a single job is running at one time in a cluster,
which is far from being realistic. The performance model that
we propose addresses both of these issues: it deals with a
concurrent workload of multiple jobs and captures the systems
dynamic behaviour.

Furthermore, while MapReduce resource provisioning for en-
suring Service Level Agreement (SLA) 2 objectives is relatively
a fresh area of research, there are some notable endeavours.
Some approaches formulate the problem of finding the optimal
resource configuration, for deadline assurance for example, as
an off-line optimization problem, see Tian and Chen (2011) and
Zhang et al. (2012). However, we think that off-line solutions
are not robust enough in real life scenarios. Another solution
is given by ARIA, a scheduler capable of enforcing on-line
SLO deadlines. It is build upon a model based on the job
completion times of past runtimes. In the initial stage an off-line
optimal amount of resources are determined and then an on-line
correction mechanism for robustness is deployed. The control
input they choose is the number of slots given to a respective

2 SLA is as a part of a service contract where services are formally
defined.

job. This is a serious drawback since the control works only if
the cluster is sufficiently over-provisioned and there are still free
slots to allocate to the job. Another approach is SteamEngine
developed by Cardosa et al. (2011) which tries to avoid the
previous drawback and dynamically add and remove nodes to
an existing cluster.
However, in all the previous cases, it is assumed that
every job is running on an isolated virtual cluster and
therefore they don’t deal with concurrent job execu-
tions.
Taking all these challenges into consideration our contributions
are two fold: we developed the first dynamic model for
MapReduce systems and we built and implemented the first
on-line control framework capable of assuring service time
constraints for a concurrent MapReduce workload.

2. OVERVIEW OF BIG DATA

2.1 MapReduce Systems

MapReduce is a programming paradigm developed for parallel,
distributed computations over large amounts of data. The ini-
tial implementation of MapReduce is based on a master-slave
architecture. The master contains a central controller which is
in charge of task scheduling, monitoring and resource manage-
ment. The slave nodes take care of starting and monitoring
local mapper and reducer processes.
One of its greatest advantages is that, when developing a
MapReduce application, the developer has to implement only
two functions: the Map function and the Reduce function.
Therefore, the programmers focus can be on the task at hand
and not on the messy overhead associated with most of the
other parallel processing algorithms, such as is the case with
the Message Parsing Interface protocol for example.
After these two functions have been defined we supply to the
framework our input data. The data is then converted into a set
of (key,value) pairs. The Map functions take the input sets of
(key,value) pairs and output an intermediate set of (key,value)
pairs. The MapReduce framework then automatically groups
and sorts all the values associated with the same keys and for-
wards the result to the Reduce functions. The Reduce functions
process the forwarded values and give as output a reduced set
of values which represent the answer to the job request.
The most used open source implementation of the MapRe-
duce programming model is Hadoop. It is composed of the
Hadoop kernel, the Hadoop Distributed Filesystem (HDFS)
and the MapReduce engine. Hadoop’s HDFS and MapReduce
components are originally derived from Google’s MapReduce
and Google’s File System initial papers (Dean and Ghemawat,
2008). HDFS provides the reliable distributed storage for our
data and the MapReduce engine gives the framework with
which we can efficiently analyse this data, see White (2012).

2.2 Experimental MapReduce Endvironment

The MapReduce Benchmark Suite (MRBS) developed by San-
groya et al. (2012) is a performance and dependability bench-
mark suite for MapReduce systems. MRBS can emulate sev-
eral types of workloads and inject different fault types into a
MapReduce system. The workloads emulated by MRBS were
selected to represent a range of loads, from the compute-
intensive to the data-intensive (e.g. business intelligence - BI)
workload. One of the strong suites of MRBS is to emulate client
requests. One request may consist of one or more MapReduce

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

153



Download English Version:

https://daneshyari.com/en/article/712146

Download Persian Version:

https://daneshyari.com/article/712146

Daneshyari.com

https://daneshyari.com/en/article/712146
https://daneshyari.com/article/712146
https://daneshyari.com

