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Abstract: An artificial pancreas (AP) system with a hypoglycemia early alarm system and
adaptive control system based on multivariable recursive time series models is developed. The
inputs of the model include glucose concentration (GC) and physiological signals that provide
information about the physical activities and stress of the patient. The stability of the recursive
time-series models is guaranteed by a constrained optimization method. Generalized predictive
control (GPC) is used to regulate GC. Experiments in a clinical setting illustrate the performance
of the AP and compare it to open-loop regulation by the patient. Results show that the AP can
regulate GC successfully and prevent hypoglycemia in spite of exercise.
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1. INTRODUCTION

Artificial pancreas systems enable automatic control of
blood glucose concentrations (GC) of patients with Type
1 Diabetes (T1D) by providing substitute endocrine func-
tionality of a healthy pancreas. Patients with T1D admin-
ister 3-5 insulin injections (usually pre-meal) per day or
use a manual insulin pump to keep their GC in normal
range (70-180 mg/dl). The success of maintaining GC in
normal range by manual injection therapies has been lim-
ited. Changing life style conditions such as stress, illness,
or physical activity are some factors that affect the per-
formance of manual regulation. Diabetes can cause long-
term complications such as cardiovascular diseases, kidney
failure, retinopathy, neuropathy, and problems with wound
healing. Diabetes has been reported as the seventh leading
cause of death in the United States, and the total cost of
diagnosed diabetes has been estimated to be $245 billion
in 2012 (American Diabetes Association, 2013). Better
regulation of GC will reduce the morbidity caused by
diabetes and its complications, and medical expenditures.

Use of proportional-integral-derivative (PID) controllers
for implementing an artificial pancreas showed the advan-
tages of closed-loop control (Bequette, 2005) but the mean
GC remained similar in open-loop and PID closed-loop
control which also caused hypoglycemia 2-3 hours post
meals (Steil et al., 2006). Model-based control strategies
provided better performance by handling delays in GC
measurement and insulin delivery and constraints on input
and output signals. Model-predictive controllers (MPC)
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used in vivo (Bruttomesso et al., 2009; Clarke et al.,
2009; Breton et al., 2012) needed modification of model
parameters for different patients in these studies. Meal
information (time and amount) was provided as known
disturbances. Adaptive control strategies based on general-
ized predictive control (GPC) were also proposed (Turksoy
et al., 2013a; El-Khatib et al., 2010). Recursive least square
(RLS) parameter estimation was used to identify unknown
parameters of time-series models in (Turksoy et al., 2013a;
El-Khatib et al., 2010) without providing any information
about meals. Glucagon was used as a second manipulated
variable with a proportional-derivative controller to pre-
vent hypoglycemia events (El-Khatib et al., 2010).

Recursive time-series models are a powerful tool for de-
scribing the dynamics of GC (Turksoy et al., 2013a; El-
Khatib et al., 2010) and for glucose prediction and hy-
poglycemia alarm systems (Turksoy et al., 2013b; Eren-
Oruklu et al., 2012; Sparacino et al., 2007). Any uncon-
strained identification method may give unstable models
because of process and measurement noise even when the
process is known to be stable. Systems such as GC are sen-
sitive to disturbances such as meals and physical activities.
Thus it is possible to identify unstable models describing
GC dynamics with regular identification methods (RLS,
extended least square (ELS) method, and subspace identi-
fication), compromising controller or hypoglycemia alarm
system performance by using predictions from an unstable
model.

Fear of hypoglycemia is a major concern of patients in
using AP systems. Many closed-loop studies with various
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control algorithms have resulted in mild or severe hypo-
glycemic episodes (Steil et al., 2006; Schaller et al., 2006;
Bruttomesso et al., 2009; Clarke et al., 2009). Mathe-
matical models for the prediction of plasma insulin lev-
els have been incorporated into closed-loop studies for
hypoglycemia prevention (Steil et al., 2011; Ruiz et al.,
2012; El-Khatib et al., 2010; Turksoy et al., 2013a). Hypo-
glycemia prediction-based pump suspension methods have
been noted to decrease the occurrence of hypoglycemia
(Buckingham et al., 2009; Elleri et al., 2010). Bihormonal
closed-loop studies (El-Khatib et al., 2010; Ward et al.,
2011) using glucagon and insulin have also been proposed
for hypoglycemia prevention. Semi-automated hybrid sys-
tems (Steil et al., 2011; Weinzimer et al., 2008; Elleri et al.,
2013; Breton et al., 2012) have been reported to reduce the
increase in postprandial glucose levels and subsequently
decrease insulin-induced postprandial hypoglycemia. Al-
though the reported methods decreased the time spent in
hypoglycemia, complete avoidance of hypoglycemia was
not achieved, and additional carbohydrate (CHO) supple-
ments were needed for treatment of some of hypoglycemic
episodes.

An integrated AP with a hypoglycemia early alarm (HEA)
system and GPC based control system is reported in
this paper. Both systems rely on multivariable recursive
time series models developed by extending RLS methods
with a constrained optimization method that guarantees
model stability. Modifications are made to classical GPC.
Physiological signals collected from a sports armband are
used to improve the prediction of GC (Eren-Oruklu et al.,
2012) and to indicate exercise or sleep to the controller for
computing the appropriate insulin infusion rate. Section
2 describes system identification. The HEA system and
the GPC system are introduced in Sections 3 and 4. The
results comparing the open-loop and closed loop insulin
regulation of one subject in a clinical study is presented in
Section 5. Discussion and conclusions are given in Sections
6 and 7.

2. SYSTEM IDENTIFICTION
2.1 Recursive Time-Series Models

Recursive time-series models can describe the time-varying
dynamics of blood GC (BGC) by adapting the model
with every new measurement. An autoregressive moving
average model with exogenous inputs (ARMAX) is used
to describe BGC dynamics. ARMAX models can easily
be extended to multi-input-multi-output systems. An AR-
MAX model is:
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where ¢(k) and (k) are the vectors of past observations
and model parameters, respectively. The white noise term
in Eq (6) is replaced with model error e(k) since the former
is an unknown signal:

e(k) = y(k) — (k) = y(k) — ¢(k)" 0 (k) (8)
The coefficients in Eqs (1)-(4) are recomputed with every
new measurement and the model is used until the next
measurement.
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2.2 State Space Representation of RLS

Recursive least square (RLS) parameter estimation is used
to identify the unknowns in Eq (7). When the disturbance
acting on the system is non-stationary, RLS may estimate
coefficients that are outside the stability region. A con-
strained RLS method must be used to guarantee model
stability. To apply the stability constraints to RLS, the
time series model is written in state space form.

X(k)=AX(k— 1)+ Ba(k — 1) + Ke(k)
y(k) = CX(k—1)+ Da(k — 1) + e(k)

with the state matrix A

(9)
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