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Abstract: As Part 2 of the paper “on networked evolutionary games”, this paper uses the
framework presented in Part 1 (Qi et al., 2014) to explore further issues about networked
evolutionary games (NEGs). First, the strategy profile dynamics (SPD) is constructed from the
fundamental evolutionary equations (FEEs). Using SPD, the control of NEGs are investigated.
Detailed mathematical models are obtained for both deterministic and dynamic cases respec-
tively. Then certain more complicated NEGs are explored. They are: (i) NEG with strategies
of different length information, which allows some players use longer history information such
as the information at t and t − 1 or so; (ii) NEG with Multi-Species, which allows an NEG
with various kinds of players, they play several different fundamental network games according
to their identities. (iii) NEG with time-varying payoffs. Since payoffs determine the evolution,
the network profile dynamics will be a time-varying one. These more complicated NEGs can
cover more general evolutions and they generalized the method proposed in Cheng et al.
(Preprint2013).
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1. INTRODUCTION

In Part 1 of this paper an NEG is defined as following,
which was firstly proposed in Cheng et al. (Preprint2013).

Definition 1. An NEG, game, denoted by ((N,E), G,Π),
consists of three ingredients as:

(i) a network (graph) (N,E);
(ii) a fundamental network game (FNG), G, such that if

(i, j) ∈ E, then i and j play the FNG with strategies
xi(t) and xj(t) respectively.

(iii) a local information based strategy updating rule
(SUR).

It was proved that the fundamental evolutionary equation
(FEE) for each player can be obtained as

xi(t+ 1) = fi ({xk(t)|k ∈ U2(i)}) , i = 1, · · · , n. (1)

Then the network profile dynamics is uniquely determined
by FEEs.

We refer to Qi et al. (2014) and Cheng et al. (Preprint2013)
for details.

Part 2 of the paper considers several advanced problems
about NEGs. In Section 2 the SPD is constructed from
FEEs. Using SPD, the control problems of NEGs are
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investigated. A detailed mathematical framework is pre-
sented in Section 3 as a standard k-valued logical control
networks. Then all the techniques for the control of k-
valued logical networks can be used. Section 4 considers
the NEGs where players can use different length of histor-
ical information to update their strategies. In Section 5 we
consider the NEGs with multi-species. That is, the players
are classified into several species, and players of different
species play different roles in the networked games. Section
6 considers when the fundamental network game has time-
varying payoff functions. Section 7 is a brief conclusion.

2. FROM FEE TO NPD

The NPD is used to describe the evolution of the overall
networked games. This section consider how to construct
the NPD of an NEG using its nodes’ FEEs. We consider
two cases: (i) the FEEs are deterministic model; (ii) the
FEEs are probabilistic model.

2.1 Deterministic Model

Assume 
x1(t+ 1) = M1x(t),
...

xn(t+ 1) = Mnx(t),

(2)
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where x(t) = nn
i=1xi(t) and Mi ∈ Lk×kn . Then we have

the NPD as

x(t+ 1) = Mx(t), (3)

where

M = M1 ∗M2 ∗ · · · ∗Mn ∈ Lkn×kn . (4)

Example 2. Recall Example 12 of Part 1. We have

x1(t+ 1) = Mfx4(t)x5(t)x1(t)x2(t)x3(t)
= MfW[23,22]x(t) := M1x(t),

x2(t+ 1) = Mfx5(t)x1(t)x2(t)x3(t)x4(t)
= MfW[24,2]x(t) := M2x(t),

x3(t+ 1) = Mfx(t) := M3x(t),
x4(t+ 1) = Mfx2(t)x3(t)x4(t)x5(t)x1(t)

= MfW[2,24]x(t) := M4x(t),
x5(t+ 1) = Mfx3(t)x4(t)x5(t)x1(t)x2(t)

= MfW[22,23]x(t) := M5x(t).

Finally, we have the NPD as

x(t+ 1) = Mx(t), (5)

where

M = M1 ∗M2 ∗M3 ∗M4 ∗M5

= δ32[1, 20, 8, 24, 15, 32, 16, 32, 29, 32, 32, 32, 31, 32, 32, 32
26, 28, 32, 32, 32, 32, 32, 32, 30, 32, 32, 32, 32, 32, 32, 32].

(6)

2.2 Probabilistic Model

Assume the strategies have the probabilistic k-valued
logical form as

xi(t+ 1) = M j
1x(t), with Pr = pji ,

j = 1, · · · , si; i = 1, · · · , n. (7)

Then we have

x(t+ 1) = Mx(t), (8)

where M ∈ Υkn×kn can be calculated as

M =

s1∑
j1=1

s2∑
j2=1

· · ·
sn∑

jn=1

[(
n∏

i=1

pjii

)
M j1

1 ∗M
j2
2 ∗ · · · ∗M jn

n

]
.

(9)

We use an example to depict it.

Example 3. Recall Example 13 of Part 1. In fact, we can
use Table 5 there to calculate M row by row. For instance,
it is obvious that

Col1(M) = Col2(M) = Col3(M) = δ132.

As for Col4(M), with probability 1/4 it could be δ332 or δ432
or δ732 or δ832. That is,

Col4(M) = [0, 0, 14 ,
1
4 , 0, 0,

1
4 ,

1
4 , 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

We simply express it as

δ32
[
3/ 1

4 + 4/ 1
4 + 7/ 1

4 + 8/ 1
4

]
.

Using this notation and a similar computation, we have

M = δ32[1, 1, 1, α, 1, α, β, γ, µ, λ, 11, 32, λ, 32, 32, 32
1, 1, 1, α, 1, 22, α, p, µ, q, r, 32, s, 32, 32, 32],

(10)

where

α = 3/ 1
4 + 4/ 1

4 + 7/ 1
4 + 8/ 1

4 ,

β = 3/ 1
2 + 7/ 1

2 ,

γ = 8/ 1
3 + 16/ 2

3 ,

µ = 1/ 2
3 + 9/ 1

3 ,

λ = 18/ 1
6 + 20/ 1

6 + 26/ 1
3 + 28/ 1

3 ,

p = 24/ 1
3 + 32/ 2

3 ,

q = 26/ 1
2 + 28/ 1

2 ,

r = 27/ 1
4 + 28/ 1

4 + 31/ 1
4 + 32/ 1

4 ,

s = 29/ 1
2 + 31/ 1

2 .

3. MODELING CONTROLLED NEGS

Definition 4. Let ((N,E), G,Π) be an NEG, and N = U ∪
Z be a partition of N . We call ((U ∪ Z), E), G,Π) a
controlled NEG, if the strategies of u ∈ U can be chosen
arbitrarily. As a result, z ∈ Z is called a state and u ∈ U
is called a control.

Using FEE, the strategy evolutionary equations can be
expressed as (Cheng et al., Preprint2013)

xi(t+ 1) = Mix(t), i = 1, · · · , n, (11)

where x(t) = nn
j=1xj(t). Assume U = {i1, · · · , iq} with

1 ≤ i1 < i2 < · · · < iq ≤ n, and Z = {j1, j2, · · · , jp} with
1 ≤ j1 < j2 < · · · < jp ≤ n, where p + q = n. Define
ur = xir , r = 1, · · · , q, and zs = xjs , s = 1, · · · , p.
We consider the deterministic case and the probabilistic
case separately.

(1) (Deterministic Case) Assume Mi ∈ Lk×kn . Then we
have
zs(t+ 1) = xjs(t+ 1) = Mjs nn

i=1 xi(t)
= MjsW[k,kiq−1]uq(t)x1(t) n x2(t) n · · ·
x̂iq n · · ·n xn(t)

= MjsW[k,kiq−1]W[k,kiq−1 ]uq−1(t)uq(t)

x1(t) n x2(t) n · · ·n x̂iq−1
n · · ·

x̂iq n · · ·n xn(t)
= · · ·
= Mjs n1

r=m W[k,kir+m−r−1]u(t)z(t),

where u(t) = nq
i=1ui(t), and z(t) = np

i=1zi(t). The
notation x̂s means this factor is removed.

Define

Ψs := Mjs n1
r=m W[k,kir+m−r−1] ∈ Lk×kn , (12)

then we have

zs(t+ 1) = Ψsu(t)z(t), s = 1, · · · , p. (13)

Set

Ψ := Ψ1 ∗Ψ2 ∗ · · · ∗Ψp ∈ Lkp×kn . (14)

The controlled network profile evolutionary equation
is expressed as

z(t+ 1) = Ψu(t)z(t). (15)

This is a standard k-valued logical control network.
(2) (Probabilistic Case) Assume

Mi = M ji
i ∈ Lk×kn , with Pr = pjii
j = 1, · · · , ri, i = 1, · · · , n. (16)

Then for each choice: {j1, · · · , jn
∣∣1 ≤ ji ≤ ri} we

can use {M ji
i

∣∣i = 1, · · · , n} to construct Ψj1,··· ,jn ,
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