
Adjoint assisted geometry design of a
feedback controlled missile ?

Kuan Waey Lee ∗ William H. Moase ∗ Andrew Ooi ∗

Chris Manzie ∗

∗Department of Mechanical Engineering, The University of
Melbourne, Parkville, Victoria 3010 Australia

(e-mail: kuanl@student.unimelb.edu.au; moasew@unimelb.edu.au;
a.ooi@unimelb.edu.au; manziec@unimelb.edu.au)

Abstract: A novel optimisation framework using an adjoint cost sensitivity calculation, and
integrating computer simulations of fluid dynamics, rigid body dynamics and control is proposed.
A generic tail-fin steered missile under closed-loop control is used to show that the framework is
able to generate a detailed geometrical tail-fin design and tune control performance parameters
that are directly related to the range and manoeuvrability of the missile. It is shown that this
new methodology is able to reduce the aerodynamic drag by 2% and the tracking error by about
3% relative to the original design.
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1. INTRODUCTION

The use of computer simulations as part of the design
process is becoming increasingly common in complex and
multi-disciplinary engineering products. For missile de-
sign, multi-point geometry optimisation ((Anderson et al.
(2000)) and trajectory and geometry optimisation (Tek-
inalp and Bingol (2004) and Yang et al. (2012)) have
been reported in the literature. These previous studies
utilised low fidelity semi-empirical aerodynamic models
such as Missile DATCOM (Vukelich et al. (1988)) rather
than modern computational fluid dynamics (CFD) models
to generate the aerodynamic data. An obvious criticism
of these methods is the accuracy of the semi-empirical
aerodynamic models. Moreover, these models implicitly
place limitations on both the fidelity and novelty of the
shapes that can be generated by the optimiser.

The field of aerodynamic shape optimisation was pioneered
by Lighthill (1945) who utilised analytical inverse field
methods to determine an optimal shape for a known pres-
sure distribution. More recently, the adjoint method has
gained popularity due to the computational efficiency of
the method. Jameson (1988) was the first to demonstrate
the capability of the adjoint method in calculating the
sensitivity of an aerodynamic functional with respect to
the geometry design variables with just two simulations.
A primal simulation is used to capture the behaviour of the
physical system and an adjoint simulation is used to calcu-
late the gradient of a cost function with respect to all of the
design variables. In comparison, calculating the gradient
of a cost function using finite differences would require at
least N + 1 simulations, where N is the number of design
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variables. The gradient can then be used within a gradient-
based optimiser to find a local minimum. Jameson’s work
was initially concerned with just optimisation of geometry
at a single steady-state, but has since been extended for
multi-point optimisation (Reuther et al. (1997)), rotor-
craft blade optimisation (Economon et al. (2012)) and
aerofoil optimisation with a predefined pitching motion
(Economon et al. (2013)). Adjoint methods are limited in
that the solution can become entrapped in local minima.
The alternative is to use global optimisation methods to
overcome this, but global methods require much higher
computational resources especially as the number of design
variables increases. In Lee et al. (2013), a global extremum
seeking method is proposed that utilises semi-converged
CFD evaluations to reduce the computational load.

In order to optimise the performance of an aircraft un-
dertaking a set of manoeuvres, one may be tempted to
simultaneously compute both the fluid dynamics and the
feedback-controlled rigid-body dynamics. Such a task is,
however, computationally expensive. Moreover, a compli-
cation is introduced by the fact that the achieved aircraft
trajectory depends upon the controller, which is typically
tuned to the aircraft geometry. In order to address these is-
sues, this paper considers a high velocity regime where the
aerodynamic forces acting on the aircraft are adequately
described by steady flow. Note that it is common practice
in missile modelling to consider only steady flow and to
neglect aerodynamic rate effects (see Menon and Ohlmeyer
(2001) and Siouris (2004)). A set of CFD simulations is
performed in order to map the aerodynamic forces acting
on the aircraft for a variety of flow regimes. These maps
are then used in a rigid-body dynamic simulation of the
aircraft undertaking a set of commanded manoeuvres. An
optimiser tunes both the controller gains and the aircraft
geometry in order to maximise the aircraft performance,
which is expressed in terms of both drag and the ability
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of the aircraft to track its commanded trajectory. Further
to this, cost function gradients are calculated through a
novel combination of an adjoint approach for the CFD
and a finite-differencing approach for the (computationally
cheap) rigid-body dynamics.

2. PROBLEM DESCRIPTION

Consider an aircraft subject to the dynamics,

ẋ = f (x, r(t), Xd, F (χ(x), Xi)) , (1)

where:

x is the system state which may, for example, include
states related to the rigid-body dynamics of the aircraft,
states related to the control surface dynamics, and states
used within a feedback controller for motion control.

r(t) is a reference signal, defined over the time interval
[0, T ], that describes a “mission” over which the perfor-
mance of the aircraft is to be evaluated.

Xd is a vector of “direct” design parameters which may,
for example, include vehicle mass, position of centre
of gravity, actuator characteristics, controller tuning
parameters and geometrical parameters whose effects
can be adequately described by available data/models
(without undertaking CFD simulations).

F is a vector of aerodynamic forces and moments that
cannot readily be written it terms of a known algebraic
or ordinary differential equation. Instead F is to be
found by performing a CFD simulation for the steady
flow about the aircraft (or a feature thereof).

Xi is a vector of design parameters related to the ge-
ometry of the aircraft. These design parameters are
referred to as “indirect” since they only enter the system
dynamics via F .

χ(x) is the “pose” or configuration of the aircraft with
respect to the incident flow. The mapping from x to
χ is typically a simple truncation transformation. For
example, χ may be described by aircraft states such air
speed, the angle of attack, slip angle, roll angle, and
control surface deflections. χ cannot contain quantities
such as linear accelerations and angular velocities since
their effect on aerodynamic forces cannot easily be
captured using steady CFD simulations. As a result of
this, the proposed approach is most applicable to high
velocity aircraft where “rate” effects on aerodynamic
forces are typically negligible.

The performance of the aircraft for the “mission” can be
written as a cost function,

Jr :=

∫ T

0

v (x, r(t), Xd, F (χ(x), Xi)) dt. (2)

The design objective is to seek the design parameters
X := (Xd, Xi) which optimise the aircraft’s performance,
in other words,

arg min
X

Jr, (3)

subject to (Xd, Xi) ∈ Dd × Di where Di and Dd are
compact sets.

2.1 Discrete approximation for aerodynamic force maps

Consider a given aircraft geometry so that Xi is fixed. F
then maps the aerodynamic forces in terms of the aircraft

pose. It is reasonable to constrain the pose to a compact
set, χ ∈ G. Nonetheless, even under these conditions, the
domain of F is continuous. Recalling that F can only
be “discovered” through CFD simulations, then a single
CFD simulation for a given value of χ reveals only one
point on the mapping, F (·, Xi). It follows that only a
finite number of points on the mapping can be found using
CFD simulations, and an interpolation scheme must then
be used to approximate F for those values of χ that are
not tested. Suppose CFD simulations are performed for n
values of χ, denoted by χ1, . . . , χn. Then the interpolated
mapping F̂k(χ,Xi) should have the property that, for any
ε > 0, there is a n∗ such that for all n > n∗, χ ∈ G and
Xi ∈ Di, ∥∥∥F̂k (χ,Xi)− F (χ,Xi, )

∥∥∥ < ε. (4)

3. OPTIMISATION FRAMEWORK

3.1 The Adjoint Method

The adjoint method is a means of calculating the gradient
of the cost function with respect to the design variables.
The derivation of the adjoint equations following from
Nadarajah and Jameson (2000) and Economon et al.
(2012) are reproduced here.

Consider a cost function J , that is a function of the flow-
field quantities, U , and geometric design variables (indirect
design variables) Xi.

J = J (U,Xi) . (5)

In aerodynamic studies, the cost functions of interest are
predominantly some function of the pressure over the
surface boundary S of the aircraft. Let the class of these
functionals be written as,

J =

∫
S

d · (pnS) ds, (6)

where, d is a force projection vector, p is the pressure and
nS is the local normal vector on the surface.

By calculus of variations a change in Xi results in a change
in the cost,

δJ =
∂J

∂U
δU +

∂J

∂Xi
δXi. (7)

It is expensive to compute variations in the flow-field quan-
tities, δU , that is, each variation will require an additional
CFD simulation. The aim of the adjoint approach is to
eliminate this term in (7). Suppose that the governing
equations of the flow are introduced in the form of an
equality constraint,

R (U,Xi) = 0. (8)

For example, R (U,Xi) could be the conservative form of
the compressible Euler equations. The variation in (8) is,

δR =

[
∂R

∂U

]
δU +

[
∂R

∂Xi

]
δXi = 0. (9)

Equation (7) can be combined with (9) via a Lagrange
Multiplier, ψ, which gives,

δJ =
∂J

∂U
δU +

∂J

∂Xi
δXi − ψ

([
∂R

∂U

]
δU +

[
∂R

∂Xi

]
δXi

)
=

{
∂J

∂U
− ψ

[
∂R

∂U

]}
δU +

{
∂J

∂Xi
− ψ

[
∂R

∂Xi

]}
δXi.

(10)
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