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Abstract: In this paper, an MPC scheme for a missile pitch axis autopilot is proposed. The
scheme uses a nonlinear prediction model to give it an ability to push the controlled missile very
close to its operating limits, and is stabilised through the use of an ellipsoidal terminal constraint.
Tracking performance and computational load of the scheme are compared to that with a linear
prediction model and other types of terminal constraint. Specifically, the choice of ellipsoidal,
polytopic, or no terminal constraint is discussed. The terminally constrained nonlinear MPC
scheme achieves comparable solution times to that with a linear prediction model, whilst being
more aggressive to give a superior tracking performance.
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1. INTRODUCTION

Model Predictive Control (MPC) has a number of at-
tractive properties for the control of a guided airframe.
It explicitly handles constraints and has the ability to
directly take into account plant nonlinearities. These are
crucial as MPC would be able to push a missile to operate
near its physical limits, at high angles of attack where
aerodynamics are highly nonlinear (Gros et al., 2012).
The other components of MPC such as objective cost
and prediction horizon can be formulated to achieve the
most desirable control behaviour. This makes MPC suited
to address current challenges in missile autopilot design,
which often revolve around the inability to account for
nonlinearities, changes in missile behaviour during flight,
and different missile configurations (Jackson, 2010).

Despite the aforementioned advantages, applications of
MPC for guiding missiles are rare. This is primarily due
to the high computational demand of MPC which can be
problematic for applications in areas where plants posses
fast, nonlinear dynamics, such as in the case of a missile
(Hu and Chen, 2007). This makes the trade-off between
theoretical advantages and implementability of MPC for
missile control an important discussion.

To address the issue regarding computational burden,
typical approaches include simplification of the problem
formulation through model linearisation, relaxation of con-
straints, or bounding by uncertain linear models. Although
reducing computational cost, these approximations can
potentially have detrimental effects on the closed loop
? This research was supported under the Australian’s Research
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performance of the controller, such as a steady-state error
due to model-plant mismatch or even instability.

The prediction model dictates the complexity of the per-
taining optimisation problem in MPC. A nonlinear predic-
tion model is associated with a higher computational load
than a linear model due to the nonconvex nature of the re-
sulting optimisation problem for most real-world applica-
tions. Early methods in solving MPC with a nonlinear pre-
diction model utilised the direct multiple-shooting (Bock
and Plitt, 1984) or collocation (Biegler, 1984). To achieve
computational times needed in missile applications, a
fast algorithm involving a sequential convex programming
(Tran-Dinh and Diehl, 2010) to solve the nonlinear MPC
scheme is followed in this paper. For benchmarking, the
prediction model is simplified by a typical linearisation.

In this paper, a terminal constraint is used to guarantee
stability of the MPC. In the early derivations of MPC
stability, the terminal constraint was used to impose
the terminal state to coincide at an invariant point, the
origin (e.g. Mayne and Michalska, 1990). This is rather
restrictive and in subsequent developments the notion of
an invariant region (rather than an invariant point) was
introduced (Michalska and Mayne, 1993). Chen et al.
(1998; 2001) extended the theory by approximating the
invariant region as an ellipsoid. An alternative approach in
approximating such a region is to use a polytope (Cannon
et al., 2003), which could better approximate the invariant
region. These approaches derive closed-loop MPC stability
with a linear differential inclusion (LDI) approximation of
the nonlinear plant model, which simplifies calculation of
the terminal region at the expense of being conservative.
This paper compares the ellipsoid and polytopic terminal
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region for missile autopilot. Further, these two approaches
are compared to a computationally simpler approach with
a relaxed constraint, i.e. the use of no terminal region.

The comparisons of the prediction models and terminal
constraints are on the basis of how quickly the controller
can drive the missile to track a given acceleration com-
mand and its computational load. This is to establish an
understanding of the quality of nonlinear MPC with an
ellipsoidal terminal constraint in terms of tracking perfor-
mance and implementability of achieved solution times.

2. PLANT MODEL

2.1 Missile pitch-axis dynamics

The missile autopilot control in the pitch-axis as depicted
in Fig. 1 is governed by the equations

α̇ = q + cos (α)Fz(α, δ)/(mV ) (1a)

q̇ = L(α, δ)/Iy (1b)

a = Fz(α, δ)/(mg) (1c)

where the aerodynamic lift force Fz and pitching moment
L are modelled by (Nichols et al., 1993)

Fz = 0.7M2P0S [CZα,1(2−M/3)α+ CZα,2α |α|+
CZα,3α

3 + CZδδ
]

(2a)

L = 0.7M2P0Sd [CLα,1(8M/3− 7)α+ CLα,2α |α|+
CLα,3α

3 + CLδδ
]
. (2b)

α is the angle of attack and q = ϕ̇ is the pitch rate of
the missile. The output of the system a is the normal
acceleration of the missile in multiples of gravitational
acceleration g. Missile speed V = MVs, where Vs is the
speed of sound, is treated as constant at Mach number
M = 2.5. The actuation of the fin deflection δ is modelled
as a second order system:

δ̈ = −ω2
aδ − 2ζω2

aδ̇ + ω2
aδc. (3)

Aerodynamic coefficients CZα,1, CZα,2 etc., other flight
condition and missile frame parameters, along with con-
stants related to (3) used are the same as given in Nichols
et al. (1993). Note that the symbols CZα,1, CZα,2 etc.
follow the standard nomenclature, and are different to that
used by Nichols et al. (1993).

The dynamics of the missile can be put in a concise form:

˙̃x = f̃(x̃, u) (4a)

y = h(x̃) (4b)

with state variables x̃ = [α, q, δ, δ̇, δc]
T ∈ Rnx , control

variables u = δ̇c ∈ Rnu , and output y = a.

The missile operation is subject to a number of constraints.
A constraint on α is associated with the fact that aerody-
namic coefficients used are only valid for a range of α. Fin
deflection δ and its rate δ̇ are subject to mechanical limits
of the actuator. Although there is no physical restriction
that limits q, a constraint is imposed (made large for it to
never be active) to make compact constraint polytopes

X = {x̃ : −x̄ ≤ x̃ ≤ x̄} , U = {u : −ū ≤ u ≤ ū} (5)

where ≤ and ≥ denote element-wise inequalities. This
describes a region within missile physical limitations and
accuracy of aerodynamic coefficients. The states and input

limits are x̄ = [ᾱ, q̄, δ̄,
¯̇
δ, δ̄]T, and ū =

¯̇
δ respectively. Due

Fig. 1. Missile on the pitch-axis plane.

to these constraints, the missile is only capable of tracking
a maximum acceleration of amax.

2.2 Tracking problem formulation

The autopilot control receives a commanded normal accel-
eration a◦ to track from the missile guidance law. Desired
steady-state values of state variables x◦ which achieve
a◦ are obtained from the solution of 0 = f̃(x◦, u◦) and
a◦ = h(x◦). The system is injective therefore a com-
manded normal acceleration a◦ is associated with one
unique steady state x◦ = [α◦, q◦, δ◦, 0, δ◦]

T
, u◦ = 0.

If a◦ 6= 0 then x◦ 6= 0. The system can be formulated as
an error system with an equilibrium at the origin x = 0:

x = x̃− x◦ (6a)

ẋ = f̃(x̃, u) = f̃(x+ x◦, u) =: f(x, u) (6b)

X = {x : −x̄ ≤ x+ x◦ ≤ x̄} , U = {u : −ū ≤ u ≤ ū} (6c)

3. MODEL PREDICTIVE CONTROL

The missile in continuous time t is controlled at each
sampling time ti, for i = 1, 2 . . . separated by a sampling
period Ts, i.e. ti+1 = ti + Ts. At each sampling instant,
with current state x(ti), the MPC scheme considered in
this paper is to solve the optimisation problem

min
xk k=1...N+1
uk k=1...N

N∑
k=1

`(xk,uk) + e(xN+1) (7a)

s.t. x1 = x(ti) (7b)

xk+1 = Φ(xk, uk) ∀k = 1 . . . N (7c)

xk ∈ X, uk ∈ U ∀k = 1 . . . N (7d)

xN+1 ∈ Xf (7e)

where Φ(xk, uk) = xk +

∫ tk+i

tk+i−1

f(x(τ), uk) dτ. (8)

The subscript k is used to discretise the continuous vari-
ables x and u into N discrete prediction variables to be
solved by computational means. Here, N characterises the
prediction horizon of the MPC scheme. The prediction
model Φ(xk, uk) takes an initial state xk and integrates
the tracking error model (6b) over one sampling period
with zero-order hold input uk to obtain a predicted state
xk+1. The solution of (7a–e) are the optimal state x∗k and
control sequence u∗k, ∀k = 1 . . . N , the first of which, u∗1, is
applied as feedback control to the plant.

3.1 Cost function

The cost function (7a) (with stage cost `(·) and terminal
cost e(·)) is a performance measure of the missile within
the prediction horizon, indicating how far the states are to
the desired values. A typical quadratic cost function:

`(x, u) = ‖x‖2Q + ‖u‖2R , e(x) = ‖x‖2P (9)
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