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Abstract: This paper aims to present a robust attitude control strategy with guaranteed
transient performance. Firstly, a Lyapunov-based control law is designed to achieve high-
performance attitude control in the absence of disturbance and parameter variation. The
proposed control law uses small feedback gains to suppress the control torque at large attitude
error, and increases those gains with the convergence of attitude error to accelerate the system
response. The overshooting phenomenon is also avoided by imposing a restriction on the
parameter selection. Then, the integral sliding mode control technique is employed to improve
the robustness, where the Lyapunov-based control law is used as the equivalent control part.
Theoretical analysis and simulation results verify the effectiveness of the proposed strategy.

1. INTRODUCTION

Controlling the rotational motion of rigid spacecraft is a
challenging issue. The difficulty lies in the highly nonlinear
and coupled governing equations, as well as the undesired
torque caused by disturbance and parametric uncertainty
(Schaub and Junkins [2009]). Therefore, for achieving
desired control performance, nonlinear control techniques
with strong robustness should be utilized.

Since the first systematic study in (Meyer [1971]), Lyapunov-
based control technique has been extensively investigated
in the attitude control literature (Wie et al. [1989],Wen
and Kreutz-Delgado [1991],Suk et al. [2001],Schlanbusch
et al. [2010]). By finding some energy-like Lyapunov func-
tions, the associated attitude controllers are constructed
by two parts, the attitude variable feedback terms and the
nonlinearity compensation terms (Wie et al. [1989],Wen
and Kreutz-Delgado [1991]). The closed-loop dynamics
can be approximated using a simple damped harmonic
oscillator model, which makes the controller very conve-
nient to validate, tune and implement. Nonetheless, only
a boundedness conclusion can be obtained in the presence
of disturbance and parametric uncertainty (Schlanbusch
et al. [2010]). As a result, the control accuracy is unaccept-
able for space missions such as rendezvous and docking,
where a highly accurate pointing or slewing is required.
Moreover, there is a tradeoff between accelerating system
response and suppressing the peak control torque, which
will degrade the control performance if unsuitable param-
eters are selected.

In order to address those shortcomings, various strategies
have been adopted. On the one hand, the robustness issue
has been considered in many research works. In (Lizarralde
andWen [1996]) and (Tsiotras [1998]), the inertia matrix is
not required in the attitude controller design by exploiting
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the passivity properties of the attitude control system.
Hence, the control precision will not be affected by the
uncertain inertia matrix and the robustness is therefore en-
hanced. However, such a conclusion only holds for the case
of attitude reorientation. With respect to attitude track-
ing, an exact knowledge of inertia matrix is still required.
In (Akella [2001]), a simple adaptive law was designed
to estimate the slow varying inertia matrix. However, the
disturbance torque is not taken into account. Integrating
with disturbance observer is another effective approach
of improving the robustness of Lyapunov-based attitude
controller (Yamashita et al. [2004],Sun and Li [2013],Sun
and Li [2011]). Nonetheless, the control accuracy depends
directly on the disturbance observer and a rigorous sta-
bility analysis under the composite controller is generally
absent due to the challenging separation principle issue.

On the other hand, in order to ensure high performance,
the backstepping method has been applied to attitude con-
trol (Krstić and Tsiotras [1999],Kim and Kim [2003],I.Ali
et al. [2010]). Compared with conventional Lyapunov-
based control, in backstepping, required specifications can
be considered during the design procedure, instead of a
careful parameter tuning after the controller design. In
(Krstić and Tsiotras [1999]), an inverse optimal attitude
control law, which is optimal with respect to a meaningful
cost function, was proposed. By virtue of the backstepping
design, the task of solving Hamilton-Jacobi equation has
been avoided. Aiming to address the tradeoff problem
between excessive control torque and the sluggish motion,
a nonlinear virtual control law (also termed as tracking
function) was employed in (Kim and Kim [2003]). Similar
strategy was developed in (I.Ali et al. [2010]) to han-
dle the input saturation problem. As is well known, in
the backstepping based attitude controller design, desired
system response is characterized by the virtual control
and is realized by the tracking of virtual control output
by the actual control input. Nonetheless, such a tracking
can only be achieved asymptotically or in finite time. In

Proceedings of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

978-3-902823-62-5/2014 © IFAC 463



other words, the expected performance cannot be globally
realized throughout the control action.

In this paper, the attitude control problem of rigid space-
craft is firstly addressed in the absence of disturbance
and parameter variation. The related object is improving
the transient performance, e.g., accelerating the attitude
tracking evolution while avoiding excessive control torque.
Unlike the backstepping strategy using a nonlinear virtual
control law in (Kim and Kim [2003]), a simple Lyapunov-
based attitude control law with state-dependent feedback
gains is presented. By restricting the damping ratio at
the equilibrium point, the overshooting phenomenon can
be avoided. Furthermore, with respect to the robustness
issue, the integral sliding mode (ISM) control technique is
utilized to redesign the Lyapunov-based control law. As
a result, a robust attitude controller with improved tran-
sient performance is developed. The effectiveness of the
proposed strategy will be verified by theoretical analysis
and numerical simulation.

2. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

Consider a thruster-controlled rigid spacecraft, whose gov-
erning equations are described by

Ĵ ω̇b + ω×
b Ĵωb = Tc + Td + Tp (1)

σ̇b = M(σb)ωb (2)

where Ĵ = diag(J1, J2, J3) is the nominal part of the
inertia matrix J ∈ R3×3, and ωb ∈ R3 denotes the
inertial angular velocity. The superscript (·)× is the skew-
symmetric matrix operator on any 3 × 1 vector α =

[α1, α2, α3]
T
such that

α× =

[
0 −α3 α2

α3 0 −α1

−α2 α1 0

]
Tc ∈ R3 is the control torque provided by the re-
action control thrusters. Td ∈ R3 stands for the dis-
turbance torque, including the environmental and non-
environmental torques. Tp ∈ R3 is the torque induced

by the parametric uncertainty. Let ∆J = (J − Ĵ ) ∈
R3×3 denote the inertia matrix uncertainty, then Tp =
−∆J ω̇b − ω×

b ∆Jωb. σb ∈ R3 denotes the Modified Ro-
driguez Parameters (MRP) representation for the inertial
attitude of the spacecraft. M(·) : R3 → R3×3 is the
Jacobian matrix operator such that

M(σb) =
(1− ∥σb∥2)I3 + 2σ×

b + 2σbσ
T
b

4
(3)

where I3 is the 3 × 3 identity matrix and ∥ · ∥ is the
vector 2-norm. Moreover, M−1(σb) = MT(σb)/m(σb)
with m(σb) = (1 + ∥σb∥2)2/16.
Let σd,ωd ∈ R3 denote the desired attitude variables,
which also satisfy the attitude kinematics in (2), i.e.,
σ̇d = M(σd)ωd. It is assumed that σd and ωd together
with ω̇d are all bounded. Subsequently, the attitude error
variables are defined as

σe = σb ⊕ σ∗
d (4)

ωe = ωb −R(σe)ωd (5)

where σe,ωe ∈ R3 represent the MRP error and the
angular velocity error. ⊕ is the MRP addition operator,
characterizing the successive rotations. For two MRPs,
e.g., σ1 and σ2, it is calculated as follows:

σ1 ⊕ σ2 =
(1− ∥σ2∥2)σ1 + (1− ∥σ1∥2)σ2 − 2σ×

1 σ2

1 + ∥σ1∥2∥σ2∥2 − 2σT
1 σ2

The superscript (·)∗ denotes the complex conjugate of
MRP and σ∗

d = −σd. R(·) : R3 → R3×3 is the rotation
matrix operator. For σe, one has

R(σe) = I3 +
8σ×

e σ×
e − 4(1− ∥σe∥2)σ×

e

(1 + ∥σe∥2)2

By substituting (4) and (5) into (1) and (2), the governing
equations in terms of ωe and σe can be described as

Ĵ ω̇e =Ĵ
(
ω×

e Rωd −Rω̇d

)
− ω×

e Ĵ (ωe +Rωd)

− (Rωd)
× Ĵ (ωe +Rωd) + Tc + Td + Tp

(6)

σ̇e = Mωe (7)
where the related arguments in M(σe) and R(σe) are
ignored for clarity.

From a practical point of view, the disturbance torque and
the inertia matrix uncertainty are both bounded. Follow-
ing the same line of (Huang et al. [2008]), it is reasonable
to assume that ∥Td + Tp∥∞ ≤ c0 + c1∥σe∥∞ + c2∥ωe∥∞,
where ci (i = 1, 2, 3) are known positive constants and
∥ · ∥∞ is the vector infinity norm. Thus, the control object
can be summarized as follows. Find an attitude controller
such that 1) σe and ωe can be globally stabilized in
the presence of bounded disturbance and inertia matrix
uncertainty; 2) transient performance of the closed-loop
system is guaranteed.

3. MAIN RESULTS

In this paper, the above-mentioned control object is re-
alized by two steps. Firstly, high-performance attitude
control in the absence of disturbance and inertia matrix
uncertainty is guaranteed by an enhanced Lyapunov-based
control law. Then, the proposed control law is redesigned
by the ISM control technique to ensure the robustness.
Before moving on, current Lyapunov-based control scheme
is briefly reviewed.

3.1 Current Lyapunov-based control

The basic idea of Lyapunov-based control is to design
a feedback control law that renders the derivative of a
specified Lyapunov function negative definite or negative
semi-definite. To this end, consider the following energy-
like Lyapunov function

V =
1

2
ωT

e ωe + 2kp ln(1 + σT
e σe) (8)

where kp > 0 is a constant scalar.

With respect to the nominal attitude control system, i.e.,
assuming Td = Tp = 0, taking the derivative of (8) gives

V̇ = ωT
e Ĵ

−1
Ĵ ω̇e + 4kp

σT
e σ̇e

1 + σT
e σe

= ωT
e Ĵ

−1
[
Ĵ

(
ω×

e Rωd −Rω̇d

)
− ω×

e Ĵ (ωe +Rωd)
]

+ ωT
e Ĵ

−1
[
Tc − (Rωd)

× Ĵ (ωe +Rωd)
]
+ kpσ

T
e ωe
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