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A B S T R A C T

The discontinuous, non-causal and instantaneous changes due to a measurement that appear in quantum me-
chanics (QM) theory are not consistent with a classical understanding of physical reality, but are completely
confirmed by experiments. Relative measurement theory explains why. This paper presents the first formal
development of an experimental measurement which includes the uncertainty due to calibration and resolution.
The uncertainty due to calibration and resolution, previously considered experimental artifacts, is shown to be
equal to the uncertainty that appears in QM theory and experiment. When the calibration to a reference and
resolution effects are considered, all the QM measurement discontinuities are consistent with classical ex-
planations.

1. Introduction

In quantum mechanics (QM) theory “…the discontinuous, non-
causal and instantaneously acting experiments or measurements” [1]
create: uncertainty – when measurements of an unchanged observable
change [2], disturbance – measuring one observable disturbs a different
observable [3], collapse – experimental results have a lower entropy
than QM theory predicts [4], and entanglement – measurement results
transfer faster than the velocity of light [5]. Strangely, experiments
completely support these unreasonable results [6]. And the wave
function (the basis of QM theory) is a complete success at describing the
probabilities of a quantum system. This agreement of extensive ex-
periments and successful QM theory has caused many to believe that
quantum mechanics is not consistent with classical mechanics, i.e., QM
is not reasonable in terms of human experience.

In 1935, the EPR paper [7] proposed that the wave function must be
an incomplete description of physical reality. The belief expressed in
the EPR paper is that physical reality has underlying consistency and it
is a fundamental task of physics to formalize this consistency [5].
Whether or not quantum and classical mechanics are consistent has
been considered and tested extensively starting before 1935, without a
clear resolution.

This paper develops the first formal measurement function [8] that
includes calibration and resolution (Sections 2, 2.1 and 2.2), converts

probabilistic QM measures to experimental measurement results (Sec-
tion 2.3), explains how relative measurement theory resolves the un-
reasonable results (Sections 3–5), completes the QM description of
physical reality (Section 5), and concludes that all mechanics are con-
sistent (Section 6).

Euler [9] identifies that any measurement result is only relative to
another measurement result. Fig. 1 presents the minimum empirical
single axis relative measurement system [10] including three entities:
observables,1 measuring apparatus with finite intervals, and a re-
ference. In Fig. 1, what is accepted in QM theory is the top half and
unshaded. What this paper adds is the bottom half and shaded grey.

Each measuring apparatus is projected (vertical arrows) on each
observable A and B, establishing the A and the B vector magnitudes in
intervals of ai and bj. The reference u is tightly correlated (relative) by
calibration (diagonal arrows) to each experimental measuring apparatus
interval (MAI). Calibration defines the interval vector magnitude of
each ai or bj. Fig. 1 does not include resolution effects.

An experimental measurement result of an observable is the sum of
each MAI magnitude (e.g., a centimeter ± uncertainty). Often mea-
surement results are assumed to be the product of the vector magnitude
(e.g., A) of the intervals times the mean (〈 〉. ) interval magnitude which
is 〈 〉A ai . Or measurement results may be assumed to be Au. When each
ai is not exactly equal to u, or when all ai are not equal, or when the
distribution of ai is not symmetrical about u, i.e., ≠ 〈 〉u ai , or when
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〈 〉 ≠ 〈 〉a MAIi , then:

≠ 〈 〉 ≠ ≠Au A a aΣ ΣMAIi i (1)

The unequalities in (1) occur when these distributions are not sym-
metrical to each other. None of these unequalities are recognized in
existing measure theory [11] as they are assumed to be related to the
experiment. Only ΣMAI in (1) describes experimental results. The un-
certainty caused by these unequalities can be significant.

When two calibration functions occur (which correlate each MAI of
each measuring apparatus to one reference), measurement result ∑ai
and measurement result ∑bj and the reference become relative to each
other (thin dash-dot line) and can be compared via a common factor of
u (common reference).

Relative describes the now corrolated relation of the measurement
result's intervals, e.g., = =a u b2 i j, as well as the now correlated rela-
tion of the measurement result's relative magnitudes (A= 6 and B= 3)
in ui, i.e., =a b6 3i j. Fig. 1 does not include the uncertainty of the MAI.
In QM theory the observables are termed entangled (thin dash-dot line)
when the measurement results of two separated observables remain
relative to each other. Entanglement is more formally developed in
Section 2.1.

In metrology (the science of experimental measurement), calibra-
tion to a reference establishes the correlation between measurement
results and decreases the uncertainty of distributions of measurement
results. QM theory is based upon a measure theory [11] which does not
consider calibration in a reference space.2 A relative measurement
theory (RMT) is needed.

2. Formal measurement

In an experimental measurement, the MAI and their coordinate axes
are defined by the SI (International System of Units) [12]. The SI is the
experimental reference space. This reference space must be applied in a
measurement theory which describes experimental results. An MAI is
correlated to the appropriate SI standard(s) using metrology. But each
MAI is not exactly equal to the others from the same measuring appa-
ratus or exactly equal to the appropriate SI standard(s).

From Fig. 1, a measurement includes the inner product function and
calibration function required to establish a comparable measurement
result. In this paper, the magnitudes of observables and their intervals
are formalized without consideration for interactions with the mea-
suring apparatus (i.e., observer effects) or any external effects such as
noise. In carefully designed inner product and calibration experiments,
these observer and external effects may be minimized or canceled and
are not considered inherent.

2.1. Inner product function

An observable (e.g., A or B) exists prior to any relative relation.
Therefore the observable is a norm or unity. Norms (bold) are self-re-
lative and represent all the magnitude possibilities. In QM theory an
observable is a superposition of complex amplitudes which represents
all the magnitude possibilities.

The inner product function converts an observable's norm to a
magnitude of interval norms. The measuring apparatus's intervals, be-
fore the calibration function, are norms, ui. A measure (observable's
magnitude in ui) is calculated when each interval of the measuring
apparatus (ui) which projects on the observable is counted. In Fig. 2
each projection is indicated by upward arrows.

Eq. (2) formalizes Fig. 2, as a sum of inner products 〈 〉. ,. where
∈ …i n{1,2, , } [13].

∑ 〈 〉 =
=

=

u A u
n

A1 , magnitude (e.g., of ) in
i

i n

i i
1 (2)

Eq. (2) may also be formalized in bra-ket notation [14]. Since
− =−u ui i n1

1 and N is a vector magnitude expressing the sum of n equal
intervals of both the observable and the measuring apparatus, then
Fig. 2 provides a derivation of the Born Rule [15]. The Born Rule
identifies that the inner product of the bra and the ket in (3) is the
probability amplitude of the magnitude of a measure in ui.

Fig. 1. Relative measurement system.

Fig. 2. Inner product function.

Fig. 3. Calibration function ui→ ui.
2 Reference space describes a vector space that also stipulates the discrete intervals

applied for measures or measurements.
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