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Abstract: Many practical applications, such as the fuel control of a gas turbine engine, can be modeled
by a feedback connection of a linear controller in series with a Hammerstein system, where the
nonlinearity provides a representation of the control element or actuator. An iterative gradient-based
method is proposed to simultaneously identify the nonlinear fuel valve characteristic and a low-order
linear plant model in gas turbine applications that leverages a priori knowledge of both the nonlinearity
and engine dynamics. The identification is a nonlinear prediction error minimization method in a closed-
loop Hammerstein model framework. It is applied to data from a high-fidelity simulation of a 5 megawatt
TaurusT M 60 industrial gas turbine.
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1. INTRODUCTION

The performance of the fuel control system in a gas turbine
engine is critical to maintain stability and achieve performance
targets. A digital feedback controller meters fuel into the com-
bustion chamber using measurements of shaft speed, stage
temperatures, pressures, and power. The fuel control valve(s)
typically possess a nonlinear position to flow area relation-
ship. The control system requires knowledge of this nonlinear
characteristic to accurately regulate fuel flow. Uncertainty or
degradation of the physical fuel valve’s flow characteristic can
lead to instability or operational limitations of turbine engine.
Sources of uncertainty vary from manufacturing variability to
contamination due to sulfur deposits on the valve’s control
surface [Cézac et al. (2008)]. Maximization of machine avail-
ability is essential to operators and the cost of unplanned service
interruption is typically greater than the cost of preventative
maintenance and returning the unit to service. The motivation
of this paper is the identification of uncertainty in a nonlinear
actuator characteristic in closed-loop operation.

Breikin et al. (2004) demonstrated that low-order linear plant
models effectively capture the relationship from fuel flow to
output power and Dai and Wang (2006) presented similar re-
sults for the relationship from fuel flow to shaft speed. Mea-
surement and simulation data are only available from closed-
loop operation. The nonlinear flow control valve, assumptions
on linear behavior of the turbine engine over limited operating
range, and closed-loop data fit nicely into a closed-loop Ham-
merstein model framework. The Hammerstein model structure
comprises an input nonlinearity in series with a linear dynamic
model. This model structure can be used to identify the uncer-
tainty in the actuator nonlinearity and approximate the dynam-
ics of the turbine engine via a linear plant model.

Identification of closed-loop Hammerstein systems has focused
on instrumental variable (IV) based methods as they mitigate
the bias due to the correlation of output noise and the input
and output signals. Laurain et al. (2009) presented an iterative

refined IV identification algorithm for LTI systems and later
for LPV systems [Laurain et al. (2010)]. Han and De Callafon
(2011) applied iterative IV identification to the problem using
piecewise triangle basis functions to parametrize the nonlinear
function. Laurain states that the IV methods provide a good ini-
tialization for use in statistically optimal prediction error meth-
ods that are sensitive to the initialization step. The IV methods
offer consistent parameter estimates on average, although with-
out optimality properties or convergence guarantees.

Prediction error minimization (PEM) methods offer an alter-
native. De Bruyne et al. (1999) developed generalized gra-
dient expressions for prediction error minimization in linear
closed-loop systems and also noted that exact gradient ex-
pressions can be developed for closed-loop nonlinear systems
where the controller is smooth and the system is bounded-
input, bounded-output (BIBO) stable around a stable trajectory.
Van Pelt and Bernstein (2000) used piecewise linear static maps
to parametrize the nonlinearities for system identification in
open-loop and closed-loop Hammerstein frameworks. Naren-
dra and Gallman (1966) applied an iterative gradient descent
algorithm for the open-loop case that motivates the closed-loop
formulation here.

Given that that the input nonlinearity (fuel valve) is smooth and
partially known and linear dynamic models have been shown
to accurately capture the dynamic response of gas turbines over
a small operating range during closed-loop control, there is an
opportunity to expand the application of systematic closed-loop
identification Hammerstein systems. We seek to apply closed-
loop Hammerstein system identification that exploits a priori
knowledge of the input actuator (control valve) for a targeted
identification of uncertainty in the flow characteristic of the
fuel valve and to evaluate the method on a high-fidelity first
principles simulation of a gas turbine generator control system.
Results are presented from closed-loop data from a high-fidelity
simulation of a TaurusT M 60 conventional combustion gas
turbine generator.
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2. PROBLEM FORMULATION

The objective of this paper is to identify a low order linear
dynamic system with possible static nonlinearity in the form of
a Hammerstein model to capture the dynamics of a high-fidelity
nonlinear turbine model with a non-linear, but static fuel valve
characteristic. The nonlinear thermodynamic Matlab/Simulink
model of a gas TaurusT M 60 turbine generator and feedback
control system is used to generate data for use in identification.
The high-fidelity model contains a full model of the Brayton
cycle that includes each stage of the cycle in addition to the full
fuel control, actuator and sensor models. The engine portion
of the simulation used in this discussion, depicted in Figure
1, is comprised of the major engine sub-assembly models, i.e.
compressor, burner, rotor, power turbine and exhaust, and their
interconnections.

Fig. 1. High-fidelity engine simulation implemented in Matlab
/ Simulink.

3. MODEL DESCRIPTION

For the sake of the approximation problem formulated in this
paper, the fuel control of a gas turbine is represented by the
closed-loop BIBO stable nonlinear system model M , shown in
Figure 2. The known controller K(q), and static nominal ac-
tuator mapping f0(·), with output w(t) is explicitly included in
the model. The uncertain static memoryless nonlinearity δ(·), in
the series connection of f0(·) with linear dynamics G(q) jointly
capture any deviation of the fuel valve characteristic from f0(·)
and nonlinear behavior of the gas turbine. The problem is to
identify the unknown nonlinear map δ(·), and linear dynamics
G(q). For identification, an additive and persistently exciting
reference signal is applied to the shaft speed set point r(t). The
data set contains the uniformly sampled input-output signals of
r(t), u(t), and y(t) with sampling time Ts over N samples. Sys-
tem identification applies a two stage iterative gradient-descent
procedure within a prediction error minimization framework to
estimate δ(·) and a low-order linear dynamic plant G(q).

Since δ(·) jointly captures uncertainty in f0(·) and the non-
linearity of the turbine plant, we introduce δw(t) in the series
connection of the static nonlinearity and linear plant dynamics
to be identified. The noise v(t), is assumed as inherent to the
physical system and in this context, the noise model is not
important to the identification objective. Since an output error
(OE) model structure is used for identification, the noise is
assigned a zero mean sequence v(t) ∼ N(0,λ) as a matter of
convention and a noise model is not estimated, i.e. H0(q) = 1.
The signal w(t), represents the flow area of the control valve is
a known function of the controller output u(t) that is given by,

w(t) = f0(u(t)). (1)

Fig. 2. Closed-loop Hammerstein system model M .

To facilitate parameter estimation, δ(·) is approximated by a set
of orthogonal basis functions that allow δw(t) to be written

δw(t) =
M

∑
j=1

ρ j(w(t))µ j. (2)

The linear dynamic process G(q) is the linear time invariant
plant,

G(q) = q−td B(q)
A(q)

, (3)

of polynomials A(q) and B(q), with the time shift operator q−1,
and input time delay td . Similarly, the controller may be written

K(q) =
D(q)
C(q)

. (4)

The following assumptions apply throughout the discussion:

A1: The reference input r(t) is known, control output u(t), and
noisy output y(t) are measured for identification.

A2: The system is closed-loop BIBO stable.
A3: The nominal f0(·) in (1) is a known, monotonic, continu-

ously differentiable function.
A4: The input time delay td , to the linear plant is known.
A5: The reference input r(t), is persistently exciting for the

identification of G(q).

Note: It is not assumed that u(t) excites the full input range of
the static nonlinearity δ(·) and plant. We will specifically use
the series connection of δ(·) and G(q) to identify δ(·) over a
limited range.

4. PARAMETRIZATION

4.1 Static nonlinearity

The nonlinear mapping in (2) is written as a linear combination
of orthogonal basis functions ρ j(w(t)), with weights µ j. The
weighting vector µ, of function δ(·), in this basis is an M-vector
parameter to be identified. The basis uses the grid

m = [ m1 · · · mM ]
T
, (5)

to define the center locations of the basis functions and satisfies
[m1 ≤ w(t)≤ mM], ∀ t ∈ [1..N]. In practice, the entire range of
u(t), and therefore w(t), may not be able to be excited due to
operational constraints on the physical system. The choice of
the M-vector of basis functions ρ(w(t)), is closely related to
the identification objective and structure of the nonlinearity. A
basis that facilitates a good approximation with parsimony in
the parameters is desirable. Han and De Callafon (2011), for ex-
ample, apply a set of piecewise triangular basis functions to the
problem. In this study, we seek specifically to locally identify
δ(·) in the series connection of a smooth valve characteristic
f0(·), and linear dynamics G(q). Lippmann (1991) discusses
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