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Abstract: The path of an innovative technology from the research stage to the validation in real test beds 
and subsequent commercialization and wider deployment may not always be straightforward. Multiple 
domain-specific constraints need to be considered and properly addressed. In case of the advanced control 
solutions for building’s Heating Ventilation and Air Conditioning (HVAC) systems, one needs to keep in 
mind limitations given by the legacy control hardware, typical instrumentation levels, and overall cost-to-
benefit ratio. The paper is written from the corporate R&D perspective and discusses methodological and 
practical aspects of design, validation and implementation of advanced control solutions in the application 
domain of commercial buildings. All issues are illustrated based on experience from the development of 
two different technologies: an embedded solution for control performance monitoring and a cloud-based 
supervisory control for HVAC systems. 

 

1. INTRODUCTION 

Today’s Building Management Systems provides monitoring 
and control capability for multiple sub-systems including 
HVAC, electrical systems, fire systems, security systems and 
others. They play an essential role in realization of an 
“intelligent building”, which can be defined from many 
different perspectives: for instance this can be a building that 
provides the most convenient environment to its occupants, 
offers a high level of automation, delivers top energy and 
environmental performance, provides high availability of 
managed spaces, or everything together. The recent 
technology trends in the area of building automation enable 
the development of new types of advanced solutions. The 
main trends can be generally characterized as follows: 

Cloud computing enables the retention of more detailed data 
about the facility as well as integration of the automation data 
with other business data (Everett et al., 2013). This in turn 
enables more powerful building analytics, which can be 
further improved through Big Data technologies to better 
inform end users and decision-makers responsible for the 
operation of the building. 

Embedded Intelligence. More computational power and 
intelligence residing directly in building automation devices 
will enable an extensive set of self-commissioning, self-
tuning, self-diagnostic and correction, and even self-
configuring features (Hartman, 2012). 

Interoperability. The demand for interoperability between 
various solutions is driving many industry standards, 
including Building Information Model (BIM), Haystack, 
gbXML and similar standards for energy management, and 
additional protocols and standards for Asset Management 
(Hamil, 2012). 

End-user experience. There is a growing focus on human 
factors and end-user experience that is driving innovative 
concepts relying on an active occupants’ engagement, such as 
the Social Building (Irwin, 2013) or the Collaborative Energy 
Management and Control (Lu et al., 2012). 

Development of new control and optimization capabilities for 
building systems is reflecting the above trends at a 
continually increasing extent, but at the same time, any new 
designs have to take into account all traditional barriers and 
challenges for deployment of these solutions, from which we 
would like to highlight the following three (Marik et al., 
2011). 

Legacy automation systems may cause problems in several 
aspects. Firstly, serious interoperability issues arising from 
the wide variety of proprietary protocols can make 
integration of multiple systems from different companies a 
challenge. Then also control strategies for legacy controllers 
are often coded in programming languages that do not allow 
easy modularization of the code, and therefore do not support 
easy reuse from one application to another.  

Instrumentation level in a typical building is not always 
sufficient for implementation of advanced control solution. 
Flow sensors - for both air flow and water flow measurement 
– are typically not available, which makes it difficult to setup 
models based on enthalpy balances. Similarly, the lack of 
meters and sub-meters for electricity and gas can severely 
limit the calculation of energy costs and objective functions 
used by the optimizers. 

Cost-to-benefit ratio remains one of the major limitations. 
Total cost associated with implementation of an advanced 
monitoring or control solution includes setup and 
configuration cost, maintenance cost, cost of additional 
sensors, and cost of potential hardware retrofits. Desire for an 
attractive return of investment usually disqualifies complex 
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solutions requiring significant engineering effort to configure 
and install the solution, as well as to maintain it in long-term. 

The paper discusses two innovative solutions – one in the 
category of embedded intelligence, the other related to cloud-
based building automation – while emphasizing important 
methodological and practical aspects of the solution design, 
validation, and transition into commercial environment. The 
text is structured in a way that the Sections 2 and 3 first 
summarize technical concepts of the control performance 
monitoring and cloud-based supervisory control solutions. 
This is then followed by the methodological overview in 
Section 4, which provides insights into main aspects of the 
development process. 

2. CONTROL PERFORMANCE MONITORING 

2.1 Problem Description 

A typical HVAC control project requires installation and 
tuning of multiple PI controllers. Usually there is a little time 
for manual tuning and also the installers often do not have a 
rigorous control engineering background. As the result, the 
control loops are often not properly tuned. In addition, the 
commissioning during one season leaves loops operating in 
another season, non-linear HVAC behavior causes poor 
control at some operating points, and the disturbances are 
significant. Due to these reasons even the good control 
quality can deteriorate in time - the comfort is then often 
violated, the energy is wasted or the actuators are worn out. 

Because of that there is a need to monitor the control 
performance after the installation and identify the poor 
behavior of loops to prevent those negative effects. There are 
hundreds of control loops in a building, so the preferred 
solution is to perform monitoring on the lower level and on-
line, without need of data transfer, storage and off-line 
evaluation. 

Existing solutions represent offline analysis of the data in 
order to classify the performance of loops. Those tools focus 
more on deeper engineering analysis, and they often do not 
provide quick reference needed by field engineers. Existing 
online analysis tools focus on particular aspects of poor 
controller tuning (e.g. oscillatory or sluggish control), not 
presenting generalized performance indicator nor wider 
diagnosis. 

2.2 Concept and Requirements 

The main idea of performance monitoring of HVAC 
controllers is to assess and diagnose the behavior of wide 
variety of control loops to provide information, alert or 
prioritization in cases when the control quality has 
deteriorated or the actuators do not behave in a standard way 
due to valve stiction, backlash, or other faults. The diagnosis 
is done directly in the controller in order to trigger the loop 
tuning mechanism, which re-tunes the controller if the cause 
of poor behavior can be addressed by proper tuning. The 
status information can also be collected by a higher level 
monitoring software, which can provide status reports with 
aggregated statistics. 

Based on this description the main requirements of the 
solution can be summarized as follows. The algorithm should 
have low memory requirements (recursive algorithms are 
preferred), it should not provide false alarms, and it should be 
applicable to a variety of loops in a building. From the user 
interaction perspective, the solution should be easy to set-up 
and capable to provide results in an intuitive way, while 
suggesting or invoking the correct action.   

2.3 Methods Used 

To meet the solution requirements the performance indices 
and oscillation detection methods were employed and further 
augmented by diagnostics, whose results were then merged to 
form aggregated performance measures. All indices were 
designed to be computed recursively. 

The predictability index, based on minimum variance index 
(Harris et al., 1999, Horsch et al., 1999), reflects how well the 
controller error is predictable. In an ideal case the controller 
error should be white noise, because any model of it can be 
used for improving the control. For that purpose the auto-
regressive model of the controller error is formed, and 
compared in terms of lower prediction error variance to the 
better of two elementary models – naive predictor and error 
variance. The predictability index is defined as 
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where 2
mvσ  is the prediction error variance of the model of 

controller error, 2
NPσ  is the prediction error variance of the 

naive predictor, and 2
errorσ is the variance of the controller 

error. The value of index close to one represents the poor 
loop performance. The same numerical logic applies to other 
indices as well. 

The fluctuation index is designed to detect high frequency 
quasi-periodic behavior with low amplitudes in controller 
output, which causes extensive wear of the actuators (e.g. 
heating and cooling valves), and it is defined as 
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where 2
NPσ  is the prediction error variance of the naive 

predictor, and 2
errorσ is the variance of the controller error. 

The offset index detects offset in controller error based on 
(Rhinehart, 1995), defined as  
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where 2
NPσ  is the prediction error variance of naive 

predictor, and MSE is mean square error of controller error. 
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