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a b s t r a c t

In this paper, a new type of a resolver angle estimator that utilizes a combined parameter and state esti-
mation scheme is proposed. A state-space model of a resolver is first developed with unknown parame-
ters. Least square estimation is employed to obtain some unknown model parameters by using the
measurements up to the current time. Based on the state-space model with estimated parameters, a con-
strained state estimator with finite memory is constructed to estimate the resolver angle. It is shown
through simulation that the proposed scheme is very effective in suppressing noise and overcoming
amplitude and phase imbalances compared with common angle tracking observers.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Resolvers have been used extensively as transducers in all kinds
of position and speed control applications such as motors, since
they are very simple and reliable. These devices employ two sinu-
soidal signals with a phase difference of p=2 to represent the angu-
lar position. From the values of two sinusoidal signals, the angular
position can be easily computed.

The recent main research areas focussing on development of
resolvers can be grouped into the following three fields [1].

� model development [1–7]
� ADCs and DSP [8–11]
� applications [12]

Specially, advanced design schemes related to ADCs and DSP
using models have been proposed for high performance. Several
methods for implementation have been proposed to more accu-
rately compute the angular position from two sinusoidal signals
with a phase difference of p=2. Most work is based on classical
approaches based on deterministic and nominal models. H/W
and S/W implementation issues of algorithms based on the nomi-
nal models without noise and model uncertainties are considered
[2,13,14]. Since noises and model uncertainties such as amplitude
imbalance may happen, the deterministic and fixed models are not
practical. For better robust performance, a feedback loop with

integrators was proposed to track down the angle position and it
has been commonly used in industry applications [15,16]. How-
ever, this scheme has limited performance since it is not based
on mathematical models. The least square technique for parameter
estimation with a mathematical model was employed without
considering noise [3]. This work only considers a static model,
not a dynamic time-series model, so the transient performance
and the tracking ability are not guaranteed. Until now, heuristic,
non-dynamic model-based, deterministic, and static approaches
have been tried without consideration of both noise and model
uncertainties. To the best of the authors’ knowledge, a modern sig-
nal processing approach based on state-space models and optimal
design has not been developed for resolver angle estimation.

In this paper, a state space model of a resolver is first suggested
and its efficiency is illustrated by applying it to the design of the
Kalman filter. State space models are more efficient and more elab-
orate than I/O models such as transfer functions in some respects.
In state space models, system noises and measurement noises can
be considered separately. If noise covariances are available or esti-
mated from experiments, the better performance can be expected
by using optimal Kalman or FIR filters. Additionally, parameters in
state space models can be easily obtained by employing on-line
parameter estimation schemes. In this regard, the proposed
scheme could be said to have good tracking ability, noise-
suppressing effect, and adaptive properties.

In this paper, we develop a stochastic state-space model for a
resolver and employ parameter and state estimation schemes for
computing the angular position. Since the proposed state-space
model includes some unknown parameters, the well-known least
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square curve fitting method is first applied to estimate them
[17,18]. Then, the state including information on the resolver angle
is recovered from the quadratic constrained least square technique
with a finite horizon. Since the proposed method is based on a
state-space model or a time-series model, better tracking perfor-
mance can be expected in comparison with existing non-
dynamic model-based approaches. Furthermore, noise-
suppressing and adaptive properties could be provided since state
estimation has a noise filtering effect and parameter estimation is
applied on line. The finite horizon state estimation employed in
this paper has been known to be more robust than conventional
growing horizon methods [19–21]. It is shown through simulation
that the proposed scheme is very effective in suppressing noise and
overcoming amplitude and phase imbalances compared with com-
mon angle tracking observers.

In Section 2, a state-space model is set up for resolver angle esti-
mation, and parameter and state estimation are applied. The sim-
ulation is carried out in Section 3 and conclusions are drawn in
Section 4.

2. Resolver angle estimation

As depicted in Fig. 1, the reference voltage for excitation Uref is
applied and two induced voltages with a phase difference of p=2
are obtained from two coils. These resolver outputs can be repre-
sented as follows:

UsinðtÞ ¼ a sinðhðtÞÞ þ v sðtÞ; ð1Þ
UcosðtÞ ¼ b cosðhðtÞ þ /Þ þ vcðtÞ; ð2Þ
where a and b are the amplitudes, / is the phase shift due to the
imperfect placement of the stator wirings of a motor, and v sð�Þ
and vcð�Þ are measurement noise. Since resolver parameters gradu-
ally vary with wear and aging, a and b are generally different from
each other, so its imbalance should be compensated. a; b, and / in
(1) and (2) are regarded as unknown variables that will be esti-
mated later on. It is assumed that the angular velocity, _hðtÞ, is con-
stant and available. The objective is to estimate hðtÞ from two
measurements UsinðtÞ and UcosðtÞ.

If the state variable xðtÞ is defined by

xðtÞ , sinðhðtÞÞ
cosðhðtÞÞ

� �
; ð3Þ

the following state space model can be obtained:

_xðtÞ ¼ 0 2pf
�2pf 0

� �
xðtÞ , AxðtÞ; ð4Þ

where dh=dt ¼ 2pf . Using the trigonometric identity,
cosðhðtÞ þ aÞ ¼ cosðhðtÞÞ cosðaÞ � sinðhðtÞÞ sinðaÞ, the measurement
equation can be written as

yðtÞ ¼ a 0
d e

� �
xðtÞ þ v sðtÞ

vcðtÞ

� �
;

, CxðtÞ þ vðtÞ;
ð5Þ

where d ¼ �b sinð/Þ; e ¼ b cosð/Þ, and vðtÞ is assumed to be zero
mean white Gaussian noise with the variance R. It is noted that
a; d, and e in (5) are unknown variables since a; b, and / in (1)
and (2) are considered to be unknown.

All we have to do is to estimate the state xðtÞ in (5). To do so, the
necessary parameters, a, d, and e of C in (5) must first be obtained.
Once a; d; e in C are known, the state estimator can be applied and
finally xðtÞ in (3) can be recovered. The angle position hðtÞ can be
computed from hðtÞ ¼ atan2ðx1ðtÞ; x2ðtÞÞ, where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ�
and atan2 is the arctangent function with two arguments in order
to return the appropriate quadrant of the computed angle. The
overall system is constructed as in Fig. 2.

2.1. Parameter estimation

If there is no noise, or vxðtÞ ¼ vyðtÞ ¼ 0; yðtÞ ¼ ½y1ðtÞ; y2ðtÞ�T in
(5) should be on the following ellipsoidal trajectory:

b1y
2
1ðtÞ þ b2y1ðtÞy2ðtÞ þ b3y

2
2ðtÞ ¼ 1; ð6Þ

where b1 > 0; b3 > 0, and b2
2 � 4b1b3 < 0 since xðtÞ in (3) is on the

unit circle, or xTðtÞxðtÞ ¼ 1. Actually, measurements yðtÞ filtered by
the state estimator may be used, so the noise-free assumption for
parameter estimation can be considered to be reasonable.

It can be easily shown through algebraic calculation that, from
b1; b2 and b3; a, d, and e in (5) can be computed as

a ¼ 1ffiffiffiffiffi
b1

p ; ð7Þ

d ¼ � b2

2
ffiffiffiffiffi
b1

p
b3

; ð8Þ

e ¼ 1ffiffiffiffiffi
b3

p : ð9Þ

b1; b2 and b3 in (6) are obtained to minimize the following cost
function:

Xk

i¼0

ðb1y
2
1ðtiÞ þ b2y1ðtiÞy2ðtiÞ þ b3y

2
2ðtiÞ � 1Þ2; ð10Þ

where y1ðtiÞ and y2ðtiÞ are measurements at sampling times ti. A
parameter set �b ¼ ½b1; b2;b3�T minimizing the cost function (10)

θ

Fig. 1. The structure of a resolver. Fig. 2. The overall structure of a resolver angle estimator.
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