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a b s t r a c t 

Vehicle climate control systems aim to keep passengers thermally comfortable. However, current systems 

control temperature rather than thermal comfort and tend to be energy hungry, which is of particular 

concern when considering electric vehicles. This paper poses energy-efficient vehicle comfort control as 

a Markov Decision Process, which is then solved numerically using Sarsa( λ) and an empirically validated, 

single-zone, 1D thermal model of the cabin. The resulting controller was tested in simulation using 200 

randomly selected scenarios and found to exceed the performance of bang-bang, proportional, simple 

fuzzy logic, and commercial controllers with 23%, 43%, 40%, 56% increase, respectively. Compared to the 

next best performing controller, energy consumption is reduced by 13% while the proportion of time 

spent thermally comfortable is increased by 23%. These results indicate that this is a viable approach 

that promises to translate into substantial comfort and energy improvements in the car. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Vehicle HVAC (Heating, ventilation, and air conditioning) sys- 

tems aim to ensure that passengers are thermally comfortable. Tra- 

ditionally, controllers for these systems are hand-coded and tuned 

to try to achieve this goal. However, there are a number of drivers 

for change: 

1. Current systems only control cabin temperature whereas ther- 

mal comfort is also dependent on a multitude of other factors 

(such as radiant heat and airflow). 

2. Past systems have relied on waste heat from the engine 

whereas electric vehicles produce much less heat and so a dif- 

ferent design is required. 

3. Current systems are energy hungry whereas electric and hybrid 

vehicles demand a much more energy efficient approach. Far- 

rington and Rugh [12] report that air conditioning systems re- 

duce the fuel economy of fuel-efficient cars by about 50%. 

These drivers for change make redesign of many parts of the 

vehicle comfort delivery system timely. As this comfort system de- 

sign changes, the controller must also adapt to best make use of 

the available actuation options. 
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The main idea in this paper is to show that Reinforcement 

Learning (RL) reliably produces a controller that uses less en- 

ergy while delivering better comfort than existing hand-coded ap- 

proaches ( Section 4 ). We also show that the trade-off between en- 

ergy and comfort can be adjusted to suit situations that demand 

either more comfort or better energy efficiency ( Section 4.3.1 ). The 

approach requires a model of the cabin environment and we pro- 

vide a simple, empirically validated, lumped model of the cabin’s 

thermal environment ( Section 3.1 ). The problem is then defined in 

terms of the state space ( Section 3.3 ), action space ( Section 3.5 ) 

and reward function ( Section 3.6 ). Issues and implementation ram- 

ifications of this approach are discussed in Section 5 . 

2. Related work 

2.1. HVAC control methods in vehicles 

Much of the work on HVAC control [2,13,17,32] remains rooted 

in thermal comfort models developed for home and office indoor 

environments. The best known comfort model is the Predictive 

Mean Vote (PMV) [10,11,16] , which estimates comfort based on: 

environmental parameters (such as air temperature, mean radi- 

ant temperature, relative air velocity and relative humidity); and 

personal parameters (such as metabolic rate and clothing thermal 

resistance). For example, Stephen et al. [32] derive a PMV-based 

fuzzy logic control mechanism, with rules like “if temperature is 

medium and activity is low, then PMV is near neutral”. 

http://dx.doi.org/10.1016/j.mechatronics.2017.04.010 

0957-4158/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: J. Brusey et al., Reinforcement learning-based thermal comfort control for vehicle cabins, Mechatronics (2017), 

http://dx.doi.org/10.1016/j.mechatronics.2017.04.010 

http://dx.doi.org/10.1016/j.mechatronics.2017.04.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechatronics
mailto:j.brusey@coventry.ac.uk
http://dx.doi.org/10.1016/j.mechatronics.2017.04.010
http://dx.doi.org/10.1016/j.mechatronics.2017.04.010


2 J. Brusey et al. / Mechatronics 0 0 0 (2017) 1–9 

ARTICLE IN PRESS 

JID: MECH [m5G; May 2, 2017;21:33 ] 

Although many aspects of vehicle thermal environment control 

are derivative of that in buildings, the vehicle’s thermal environ- 

ment is transient and non-uniform [37] . Thus it is recognised that 

what is appropriate in the thermal comfort model for a building 

may not be appropriate in a car [5,23] . 

While there are a number of thermal comfort models available, 

there is disagreement between these models about what contri- 

bution different parameters should have, or even what parameters 

to include [5] . Moreover, there are clearly parameters that might 

be considered but are not generally included. For example, occu- 

pants may enter the vehicle with latent or stored heat, they may 

have a physiological condition (such as a fever), or they may have 

cultural or personal preferences [4] . While there are many factors 

that can affect comfort, not all affect it equally. While air temper- 

ature remains central to comfort, as the number of sensors and 

intelligence of the controller within the car increases, it becomes 

possible to include more factors. 

A number of additional models, estimators , and predictors pop- 

ulate the literature, typically accompanied by a strategy for HVAC 

control (e.g., Ueda and Taniguchi [36] predicts comfort based on 

facial skin temperature and cabin air temperature; Goenka and 

Maranville [17] proposed a zonal HVAC system driven on an occu- 

pant thermal comfort level based on sensor measurements, ther- 

mal comfort charts, the ASHRAE thermal scale, ISO 7730, the PMV 

index, the PPD index and their combination; Kranz [23] applies ar- 

tificial intelligence methods to extract thermal comfort knowledge 

from the interaction between the passengers and the HVAC con- 

trols). Not surprisingly, most, if not all, of the proposed controllers 

are based on machine learning techniques. A prime reason is that 

car cabin comfort control is non-linear with respect to the observ- 

able state, for example: (a) the transfer of heat as a function of 

vent speed and vent temperature is non-linear; (b) any plant out- 

put limitation affects response in a non-linear fashion [8] ; (c) com- 

fort models, such as Predicted Mean Vote (PMV) and equivalent 

temperature (ET), are a non-linear function of their inputs. 

Fuzzy logic is a common HVAC control approach given the im- 

precise nature of comfort [3,7,8,13,15,27,31,32,34] and many fuzzy- 

logic controllers have been found to perform better than the 

traditional air temperature controllers. Farzaneh and Tootoonchi 

[13] demonstrated that even better results were obtained when 

the parameters of the comfort oriented fuzzy controller were opti- 

mised by a genetic algorithm. Such controllers are, however, com- 

putationally expensive and can be difficult to design. 

2.2. Reinforcement learning-based control applications 

Dalamagkidis et al. [6] and Fazenda et al. [14] have examined 

the problem of optimising HVAC thermal comfort-based control 

through a RL-based technique in the context of buildings rather 

than cars. Dalamagkidis et al. [6] developed and simulated a re- 

inforcement learning-based controller using Matlab/Simulink. The 

reward is a function of the building occupants’ thermal comfort, 

the energy consumption and the indoor air quality. The proposed 

controller was compared to a Fuzzy-PD controller and a traditional 

on/off controller (an evaluation approach also applied here). The 

results showed that, after a couple of simulated years of train- 

ing, the reinforcement learning-based controller performed better 

in comparison to the other two controllers. 

Dalamagkidis et al. [6] highlight an issue with regard to re- 

inforcement learning-based controllers—that of sufficient explo- 

ration. Taking random actions, even during short times, is unac- 

ceptable for a system deployed in a real environment and the au- 

thors recommend to exhaustively train the controller prior deploy- 

ment and allow minimal or no exploration at all afterwards. This 

work provided inspiration and a good foundation for our work in 

vehicle cabins. 

Fig. 1. The process of finding an optimal policy with RL involves modelling the 

cabin environment T , identifying the state S and action A spaces, defining the dis- 

tribution S 0 of initial states, and defining an appropriate reward function R (s, a ) . 

Fazenda et al. [14] have examined the problem of optimising 

comfort and energy using Q-learning with a state space that in- 

cludes the time of day. They break the control problem down into: 

bang-bang control (when to turn the heater on or off) and set- 

point control (what temperature to request at what time). In their 

work, the tenant immediately responds to discomfort, which might 

seem unrealistic, but it provides similar input to the thermal com- 

fort model used here. By including time, they neatly provide for 

pre-heating or cooling and this approach might also be used for 

the car cabin. 

Less recently, Anderson et al. [1] have examined the problem of 

a simulated heating coil and combined a PI (proportional-integral) 

controller with an RL supervisor. They showed that the combined 

approach outperforms the base PI controller. This combination is 

similar to the approach here where the RL action is a vent temper- 

ature set-point that is passed to a base controller to achieve. 

Dounis and Caraiscos [9] provide a detailed review of computa- 

tional intelligence approaches in the built environment and show 

that, for the built environment, a variety of adaptive control ap- 

proaches have been tried and advanced approaches (such as RL) 

have led to improved comfort and energy savings. 

This past work demonstrates that RL, while untested, may be 

appropriate in this domain. 

3. Materials and methods 

We formulate the cabin comfort control problem ( Fig. 1 ) as a 

Markov Decision Process (MDP) with continuous states defined by 

the tuple 〈 S, S 0 , A, T , R , γ 〉 , where S is the (infinite) set of states of 

the cabin environment from which a set of initial states S 0 ⊆S is 

drawn, A is a finite set of actions (e.g., setting the blend door po- 

sition), T : S × A → S is a deterministic environmental model that 

maps states and actions to subsequent states, R : S × A → � is a 

function expressing the reward for taking an action in a particu- 

lar state, and γ is a discount factor such that, for γ < 1, a reward 

achieved in the future is worth less than a reward achieved imme- 

diately. 

The solution of the MDP is a policy π : S → A or mapping 

from states to actions and, in particular, an optimal solution is one 

that maximises the long-term, discounted expected reward. In al- 

gorithms such as Q-learning and Sarsa( λ), rather than find the pol- 

icy directly, we estimate the expected value or utility Q 

π ( s, a ) of 

each state, action combination when following policy π . This ex- 

pected value is the immediate reward R ( s, a ) plus the discounted 

subsequent reward, which can thus can be defined recursively, 

Q 

π ( s, a ) = R ( s, a ) + γ Q 

π ( T ( s, a ) , π( T ( s, a ) ) ) . (1) 

We can then progress greedily towards the optimum policy by up- 

dating the policy π to be that which maximises Q 

π , or, 

π( s ) ← arg max 
a ∈ A 

Q 

π ( s, a ) . (2) 

Since the policy for any state is easy to calculate from Q 

π , it does 

not need to be explicitly stored. 
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