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a b s t r a c t 

A tensor approach to simulate and predict the transverse intensity and distribution of a two-point correlation of 

beams of arbitrary shape and coherence through atmospheric turbulence has been derived on the basis of the 

extended Huygens–Fresnel principle. The validity of this approach is verified by comparing the reconstructed 

intensity and second-order correlation of symmetric points in the output plane of a Gaussian Schell-model beam 

with calculated results from analytic formulae. An example illustrates how this tensor approach can be applied 

to beams blocked by finite apertures in the atmospheric propagation. Our approach provides an efficient and 

universal numerical model to manage the turbulent propagation of various optical sources. This approach can be 

useful in long-distance imaging and optical communication. 

1. Introduction 

In recent years, increasing attention has been paid to the propaga- 

tion of partially coherent beams (PCBs) through atmospheric turbulence 

[1] due to their important applications in free space communication [2] , 

optical imaging [3–5] , and remote sensing and detection [6,7] . Among 

these investigations, theoretically predicting the transverse intensity dis- 

tribution and the correlation property of randomized optical sources is 

important. Through theoretical analysis, the turbulence-induced effects 

have been characterized and predicted [8–11] . Special beam classes and 

new types of partially coherent fields [12] have been analyzed to miti- 

gate the degrading effects of atmospheric turbulence [13–16] . However, 

due to the complexity of turbulence and the variety of light sources, 

analytical solutions that present accurate formulae for the simulation 

of the atmospheric propagation problem are not always available and 

have to start again for every optical source [17] . As a result, one has 

to rely on numerical simulation methods. Direct integration from the 

extended Huygens–Fresnel integral is one option [18] , but it appears to 

be time consuming for complicated optical sources even without tur- 

bulence [19,20] . The standard computational model for the numerical 

simulation utilizes a multiple-phase screen strategy in accordance with 

which the turbulence is described by thin random phase screens. Dis- 

crete Fourier transform (DFT) techniques are used to accomplish screen- 

to-screen propagation [17,21] . In these DFT-related methods, the lowest 

spatial frequency of the beam is approximately equal to the inverse of 

the width of the simulation domain, which means frequencies lower 

than this inverse are not included. This condition causes distortions in 
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the reconstruction by DFT [1] . Moreover, sampling constraints have to 

be strictly obeyed when the DFT is carried out [21] . Any violation of 

the constraints would lead to errors in reconstruction. Therefore, an ef- 

ficient formalism capable of managing the turbulent propagation of gen- 

eral beam classes and free from the DFT-related limitations is desirable 

but does not exist yet to the best of our knowledge. 

Recently, an efficient tensor approach (ETA) has been reported for 

numerically reconstructing a propagated PCB in free space [22] . This 

approach is a direct reconstruction method, which does not carry out 

the Fourier transformation of the field between the space and frequency 

domains. Therefore, this method does not have the drawbacks of DFT. 

However, this approach can only manage the propagation problem in 

free space. Combining turbulence effects with ETA is helpful for theo- 

retical simulations. 

The atmosphere can be modeled in terms of a power spectral den- 

sity of the fluctuation of the refractive index [23] , and the most com- 

mon models are von Karman, Kolmogorov, and non-Kolmogorov. A 

modified von Karman formalism, which combines the von Karman and 

non-Kolmogorov turbulences, has been presented [24,25] . Additionally, 

this formalism can reduce to the conventional Kolmogorov turbulence 

[26,27] . For general usage, this modified von Karman formalism seems 

to be a good selection to describe the atmosphere. 

In this manuscript, an ETA to simulate the atmospheric propagation 

of partially coherent beams is derived under the extended Huygens–

Fresnel principle. The generalized turbulence model, which is appli- 

cable for both Kolmogorov and non-Kolmogorov statistics, is utilized. 

Tensor/matrix formalisms are presented to reconstruct the spectral den- 

sity (averaged intensity) and cross-spectral density (CSD) of symmetric 
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points in the transverse plane of arbitrary shape and coherence through 

atmospheric propagation. 

2. Theory 

2.1. Propagation of PCBs in atmospheric turbulence 

In accordance with the extended Huygens–Fresnel integral, the 

paraxial propagation of the CSD function of a PCB in turbulence can 

be obtained as [1,23] 

𝑊 ( 𝛒𝟏 , 𝛒𝟐 , 𝑧 ) = 

1 
𝜆2 𝑧 2 ∫

∞
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where 𝑘 = 2 𝜋∕ 𝜆 is the wave number; 𝝆1 , 𝝆2 denote the two positions in 

the output plane; and r 1 , r 2 represent the positions in the input plane. z 

refers to the propagation distance in the atmosphere. The angle bracket 

< > m 

signifies the ensemble average over the turbulence medium. To 

propagate a PCB in the turbulence of non-Kolmogorov statistics with the 

von Karman spectrum, the phase term ⟨exp [ 𝜓 
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where T is a turbulence parameter defined by 
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with 𝜅𝐦 

= [ 2 𝜋Γ(5 − 𝛼∕2) 𝐴 ( 𝛼)∕3 ] 1∕( 𝛼−5 ) ∕ 𝑙 0 , 𝜅𝟎 = 2 𝜋∕ 𝐿 0 . Here, L 0 and l 0 
represent the outer and inner scales of the turbulence, respec- 

tively. A ( 𝛼) and 𝛽( 𝛼) are functions of 𝛼 and defined by 𝐴 ( 𝛼) = Γ( 𝛼 − 
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function, and Γl () refers to the incomplete gamma function. C̃ 

2 
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a generalized refractive index structure parameter with a unit of m 

3− 𝛼 . 

The parameter 𝛼 symbolizes the power law exponent. 

Eq. (3) is applicable for the description of both Kolmogorov and non- 

Kolmogorov turbulences. When 𝛼 = 11/3, Eq. (3) reduces to the conven- 

tional Kolmogorov turbulence. In other cases, the equation is for the 

non-Kolmogorov turbulence. 

2.2. Averaged intensity distribution in atmospheric turbulence 

On the basis of Eq. (1) , the averaged intensity distribution, i.e., < I ( 𝝆, 

z ) > ≡W ( 𝝆, 𝝆, z ) can be obtained by calculating the following integral: 
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(5) 

To indicate the spatial vector points in a transverse plane, we have 

used 𝝆≡ ( u, v ) and r ≡ ( x, y ). To indicate discrete coordinates, we have 

set 𝑥 
𝑗 1 

= 𝑗 1 Δ1 , 𝑦 𝑘 1 
= 𝑘 1 Δ1 , 𝑢 𝑚 = 𝑚 Δ2 , and 𝑣 𝑛 = 𝑛 Δ2 , where the grid (sam- 

pling) separations in the input and output planes are Δ1 and Δ2 , respec- 

tively. The discrete form of Eq. (4) is as follows: 
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, (6) 

where the average intensity I ≡ { I ( u m 

, v n )} with 𝑚, 𝑛 = 1 ⋯ 𝑁 2 is a matrix 

of N 2 ×N 2 . H x ≡ { H x ( x j , u m 

)} and H y ≡ { H y ( y k , v n )} with 𝑗, 𝑘 = 1 ⋯ 𝑁 1 
represent the impulse response functions of a free propagation system 

in x and y directions, respectively, and both are N 1 ×N 2 matrices. N 1 

and N 2 denote integers, representing the numbers of sampling points in 

the input and output planes, respectively. Within the paraxial approxi- 

mation, i.e., Δ1 ≪ 

√
𝜆𝑧 , the response matrix is as follows [22,28] : 
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H y can be represented in the same way. The superscript 

“T ” indicates the matrix transpose and complex conjugate. 𝐖 t ≡
{ 𝑊 t ( 𝑥 𝑗 1 , 𝑥 𝑗 2 , 𝑦 𝑘 1 , 𝑦 𝑘 2 )} with 𝑗 1 , 2 , 𝑘 1 , 2 = 1 ⋯ 𝑁 1 signifies the discrete form 

of the input CSD function, which is a tensor (multidimensional ar- 

ray) of N 1 ×N 1 ×N 1 ×N 1 . The discrete form of Eq. (5) is as follows: 

[ 𝑾 t ] 𝑗 1 𝑗 2 𝑘 1 𝑘 2 ≡ [ 𝐖 0 ] 𝑗 1 𝑗 2 𝑘 1 𝑘 2 ⋅ exp { − 𝜋2 𝑘 2 𝑇 𝑧 [ ( 𝑥 𝑗 1 − 𝑥 𝑗 2 
) 2 + ( 𝑦 𝑘 1 − 𝑦 𝑘 2 

) 2 ]∕3 } . 
In some cases, the tensor calculation of Eq. (6) can be further simpli- 

fied. For example, when the CSD function of the optical source is x-y sep- 

arable, Eq. (5) can be separated, i.e., 𝑊 t ( 𝐫 1 , 𝐫 𝟐 ) = 𝑊 tx ( 𝑥 1 , 𝑥 𝟐 ) 𝑊 ty ( 𝑦 1 , 𝑦 𝟐 ) , 
where 

𝑊 tx 
(
𝑥 1 , 𝑥 𝟐 

)
= 𝑊 0 

(
𝑥 1 , 𝑥 𝟐 

)
exp [− 𝜋2 𝑘 2 𝑇 𝑧 ( 𝑥 1 − 𝑥 𝟐 ) 2 ∕3] , (8) 

and W ty ( y 1 , y 2 ) can be obtained in a similar way. Eq. (6) can be simpli- 

fied into a matrix form 

[ 𝑰 ] 𝑚𝑛 = 

[
𝑯 x 

𝑇 𝑾 tx 𝑯 x 
]
𝑚𝑚 

⋅
[
𝑯 y 

𝑇 𝑾 ty 𝑯 y 
]
𝑛𝑛 
, (9) 

where W tx and W ty are N 1 ×N 1 matrices: 𝑾 tx ≡ { 𝑊 tx ( 𝑥 𝑗 1 , 𝑥 𝑗 2 )} , 𝑾 ty ≡
{ 𝑊 ty ( 𝑦 𝑘 1 , 𝑦 𝑘 2 )} . The dot ( · ) indicates a scalar multiplication. 

Through Eqs. (6) and (9) , the evolution of the intensity of vari- 

ous PCBs in both Kolmogorov and non-Kolmogorov turbulences can be 

quantitatively analyzed. 

2.3. Second-order correlation of symmetric points in turbulence 

In this section, a concrete formula for the CSD function between two 

symmetric points in the output plane, i.e., ( 𝝆, − 𝛒), is derived. Setting 

𝛒1 = − 𝛒2 = 𝛒 in Eqs. (1) and (2) , one obtains 

𝑊 ( 𝛒, − 𝛒, 𝑧 ) = Γ( 𝛒, 𝑧 ) 

= ∬∬ 𝑊 0 ( 𝐫 1 , 𝐫 𝟐 ) exp [ − 𝛅( 𝐳) ⋅ ( 𝐫 1 − 𝐫 𝟐 ) 2 ] exp [ −8 𝛿( 𝑧 ) ⋅ 𝛒𝟐 ] 

⋅ exp 
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)2 ]d 2 𝐫 𝟏 d 2 𝐫 𝟐 , (10) 

where �̃� = ( 1 + 𝑖 2 𝑧𝛿( 𝑧 )∕ 𝑘 ) 𝛒 with 𝛅( 𝐳) = 𝛑𝟐 𝐤 𝟐 𝐓𝐳∕ 𝟑 . Thus, the output CSD 

can be represented as 
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(11) 

where �̃� = �̃� 
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�̃� t �̃� 𝑥 �̃� 𝑦 with �̃� t = 𝑾 0 ⋅ exp [ − 𝛿( 𝑧 ) ⋅ ( 𝐫 1 − 𝐫 𝟐 ) 2 ] , 

[ ̃𝐇 𝑥 ] 𝑗𝑚 = 𝐻 𝑥 ( 𝑥 𝑗 , ̃𝑢 𝑚 ) , and [ ̃𝐇 𝑦 ] 𝑘𝑛 = 𝐻 𝑦 ( 𝑦 𝑘 , ̃𝑣 𝑛 ) . �̃� 𝑚 and �̃� 𝑛 are com- 

plex coordinates and defined by �̃� 𝑚 = ( 1 + 𝑖 2 𝑧𝛿( 𝑧 )∕ 𝑘 ) 𝑢 𝑚 and 

�̃� 𝑛 = ( 1 + 𝑖 2 𝑧𝛿( 𝑧 )∕ 𝑘 ) 𝑣 𝑛 . 
When the CSD function of the input signal W 0 ( r 1 , r 2 ) is mathemati- 

cally separable in x and y, Eq. (11) can be simplified as follows: 

[ 𝚪] 𝑚𝑛 = exp 
[
−8 𝛿( 𝑧 )( 𝑢 𝑚 2 + 𝑣 𝑚 

2 ) 
]
⋅ [ ̃𝑯 

𝑇 

𝑥 
�̃� tx �̃� 𝑥 ] 𝑚, ( 𝑁 2 +1− 𝑚 ) 

⋅ [ ̃𝑯 

𝑇 

𝑦 
�̃� ty �̃� 𝑦 ] 𝑛, ( 𝑁 2 +1− 𝑛 ) 

, (12) 

where �̃� tx ( 𝑥 𝑗 1 , 𝑥 𝑗 2 ) = 𝑊 0 ( 𝑥 𝑗 1 , 𝑥 𝑗 2 ) exp [ − 𝛿( 𝑧 ) ( 𝑥 1 − 𝑥 𝟐 ) 2 ] . �̃� ty can be ob- 

tained in a similar way. 
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