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a b s t r a c t 

We propose a simple generalization of the box fractal dimension in images by considering the curve obtained 

from its value as a function of the binarization threshold. This curve can be used to partially describe ordinary 

images, textures, static and dynamic speckle patterns. We show some examples of different applications of this 

approach in some cases of interest. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rough surfaces illuminated by coherent laser light show a grainy ap- 

pearance called speckle [1–2] . Speckle techniques have been applied to 

study different experimental situations. According to the problems to be 

solved, different algorithms are required, for example, speckle correla- 

tion to study surface roughness [3] and digital speckle pattern interfer- 

ometry (DSPI) for the study of displacements, deformations and cracks 

[4] . 

When the surface changes, its speckle pattern also changes and it is 

called dynamic speckle [5] . Some properties of the surface changes can 

be inferred from the time dynamics of its irradiance. Several applica- 

tions of the measurement of dynamic speckle activity have been found 

in medicine, biology, industry, agriculture, etc. [see 5 and references 

therein]. Also, some algorithms have been developed for different ap- 

plications. In general, the algorithms used in these techniques are useful 

to solve some situations but cannot be applied to others. For example, 

when we try to describe static or dynamic speckle patterns it is very 

difficult to find a single algorithm to analyze both situations. 

In a recent work we performed an exhaustive comparative analysis 

of the descriptors most often used in different applications [6] . 

Also, we have proposed and shown the possibility to apply the box 

fractal dimension to characterize speckle patterns in some restricted sit- 

uations [7] . In that case, we showed numerical simulations and a con- 

trolled experiment. 

Fractal dimensions, introduced by B. Mandelbrot [8] , have been 

found as useful descriptions in mathematics, in many images such as 

those that can be found in natural landscapes, patterns, sequences, bi- 
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ological tissues, simple life forms, organic systems, complex life forms, 

environments and many other branches of the natural sciences. 

In this paper, we propose to extend the use of the box fractal algo- 

rithm to characterize both static and dynamic speckle patterns in several 

experimental situations, but it can also be applied to other types of im- 

ages. It is possible, with a single algorithm and small adaptations, to 

apply it to very different problems. 

We present the results on laser static speckle patterns in an exam- 

ple of roughness and on dynamic speckle quantitative measurements 

for free propagation geometry in controlled experimental conditions, in 

the evolution process of polymers (drying of paint) and in ultrasound 

speckle images. 

2. Theory 

2.1. Box fractal dimension 

The box fractal dimension (BFD), also named the box counting di- 

mension or similarity dimension, is a method of characterizing data, 

for example, curves or binary images, by decomposing the subject into 

boxes (usually squared) of different sizes and measuring how the data 

cover the plane at different scales [8] . If the image is not binary, it must 

binarized using some threshold U 0 so that every pixel of the image is set 

to 0 if its value is smaller than U 0 and to 255 in other cases. 

The box fractal dimension for that threshold is obtained using the 

expression: 

𝑁 ( 𝑠 ) = 𝐵. 𝑠 − 𝐵𝐹𝐷 (1) 

where s is the size of the side of each square box, B is a constant, N ( s ) 

is the number of boxes with side s required to cover the image and BFD 

is the box fractal dimension. In the limit s → 0. 
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Fig. 1. A red wine drop on paper and how it is covered with three different 

grids. 

Fig. 2. log ( N ( s )) plotted versus log ( s ). 

As images are only accessible as discrete integer numbers, the limits 

s → 0 cannot be reached. Then, in practice, the BFD is estimated as the 

slope of the straight line best fitting (least square error) a log –log graph: 

− ( log 𝑁 ( 𝑠 ) vs log 𝑠 ) (2) 

for a series of different values of s . 

We are going to use an example to illustrate the procedure: 

a) A grid is overlaid on the two-dimensional binary image of an object 

with grid size = s × s as shown in Fig. 1 . 

b) Then N ( s ), the number of cells containing at least one white point of 

the object, is counted and stored. The number of cells containing at 

least one dark point could alternatively be used. 

c) Next, the size of the grid s × s is changed and the process repeated. 

d) With the obtained results , log ( N ( s )) is plotted versus log ( s ). See 

Fig. 2 . 

e) The best fitting straight line is determined by using minimum 

squares. Its slope with reversed sign is, by definition, the box fractal 

dimension (BFD) estimation for every chosen binarization threshold 

U . 

The original image is again binarized with a new U threshold value. 

The BFD measurement is then repeated on the result. 

Changing the value of U generally produces a different value for the 

BFD. There seems to be no unique criterion for the choice of the opti- 

mum threshold value in all cases. In digital image processing there are 

several thresholding techniques used to binarize images. Two popular 

thresholding criteria are to use the middle value of the dynamic range 

and the Otsu method [9] . 

It is possible that for some unfortunate choice of the threshold two 

or more experimental situations result in the same or close value for the 

fractal dimension, making it impossible to distinguish between them 

(see for example Figs. 12 a and 13 a below). For these cases, it is conve- 

nient to use more than one threshold value. 

B. Chaudhuri and N. Sarkar [10] proposed an improved method for 

the calculation of the fractal dimension, named Differential Box Count- 

ing. In it, although there was no explicit use of a threshold, the dynamic 

range inside each box was used to count the number of occupied ones 

for the calculation of the FD. That procedure was used, for example, for 

segmentation of textures [11] and several improvements were proposed 

afterward [12–14] . The use of all possible thresholds was not contem- 

plated because for very high values of the threshold very few points are 

left and the adjustment of the calculation is very poor. 

Nevertheless, complex textures could include different structures 

with different fractal dimensions in different ranges of the image’s dy- 

namic range. 

In the Chaudhuri and Sarkar method, the image is considered as a 

surface in a 3D space divided into boxes, with the intensity at each pixel 

as the third coordinate. Boxes are counted considering the maximum 

and the minimum value of intensity in the contained volume. This so 

defined dimension is then a single value between 2 and 3. No other 

threshold is considered. 

In this work, we propose the use of all possible values of U so that 

information on structures with different gray levels can be preserved. 

We call this result the box fractal dimension curve (BFDC). 

In this approach, each thresholded image is equivalent to a level 

cut of the surface defined in Sarkar’s method and projected on the x, y 

plane. So, when every possible threshold is considered, a set of numbers 

between 0 and 2 are obtained. By continuously changing the threshold, 

the obtained box fractal dimension describes a curve that is character- 

istic of the distribution of gray levels in the image. 

Theoretically, the curve should start with the value 2. In practice, 

nevertheless, when the curve is numerically adjusted, the result may 

be slightly higher or lower than the theoretical value. This is due to the 

error committed when the image is quantized. By increasing the number 

of bits this undesired effect can be alleviated. 

2.2. Box fractal dimension curve (BFDC) in an image example 

As a first step to illustrate the use of the BFDC algorithm, in this 

section we show its application to the well-known case of the mandrill 

image. 

A digital image in incoherent light is an array of integer values, 

named gray levels, distributed on a bidimensional frame. Each value 

represents the irradiance registered on the sensitive plane of a camera. 

As irradiance is usually a continuous function of the position, a quantiza- 

tion of its values and a spatial sampling are inherent to the register [15] . 

The distribution of the gray levels can be visualized by its histogram. 

One frequent operation in image processing is binarization. It con- 

sists in segmenting the image according to comparison of the gray lev- 

els with a threshold value. If the gray level of a pixel is higher than 

the threshold, the binarized image is assigned the highest value (usu- 

ally 255) and the rest is assigned to be zero. The binarization operation 

generates a sharp, usually irregular, edge between the bright and the 

dark regions. 

In this work we explore the use of the fractal dimension of that bi- 

narized image as a function of the chosen binarization threshold. It is 

evident that if the threshold is very low, most of the pixels in the bi- 

narized image are going to be bright and cover a substantial area of 

the image. It is to be expected that in that case the fractal dimension 

will be near the value 2. Conversely, when the threshold value is higher 

than the highest irradiance pixel value, all the binarized image will be 

uniformly black and the fractal dimension will be zero. Between these 

extreme situations, the fractal dimension as a function of the thresh- 

old will describe a curve that we name the box fractal dimension curve 

(BFDC). 

Fig. 3 a) shows a typical example image of a mandrill used in many 

image processing examples. Fig. 3 b) shows the histogram of the image. 

Fig. 3 c) shows the result of applying the concept of the box fractal di- 

mension curve (BFDC) to the image of the mandrill. Notice that it starts 

at 2, that is, for small thresholds the binarized image covers all of the 

plane. This is so until the threshold reaches the smallest occupied value 

of the histogram (22 in Fig. 3 b). Then, it decreases, in this case almost 

monotonically, to 0 for the highest occupied level and over. Between 

these two values, the particular behavior of the curve depends on the 

characteristics of the image. 

48 



Download English Version:

https://daneshyari.com/en/article/7131656

Download Persian Version:

https://daneshyari.com/article/7131656

Daneshyari.com

https://daneshyari.com/en/article/7131656
https://daneshyari.com/article/7131656
https://daneshyari.com

