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a b s t r a c t 

We demonstrate a lensless phase-shifting point diffraction interferometer with a tiny pinhole to measure spherical 

mirror surface figures. The interferograms used to reconstruct the surface figure are formed without imaging 

optics. Fresnel diffraction calculations with a coordinate transformation are studied as a means of reconstruction 

method for wavefront amplitude and phase. The Radon transform is used to determine the distance from the 

tiny pinhole to the CCD target, which guarantees the accuracy of the diffraction calculations. Our lensless phase- 

shifting point diffraction interferometer not only retains the higher measurement precision by the ideal reference 

wavefront, but also overcome the fabrication and mounting limitation of the imaging optics. The simulations 

and experiments have validated the accuracy and feasibility of the spherical mirror measurement by proposed 

lensless phase-shifting point diffraction interferometer. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The development of lithography industry demands an ulra-high re- 

quirement on spherical and aspherical surface measurement, such as 

extreme ultraviolet lithography (EUV), which require spherical and as- 

pherical mirrors with a sub-nanometer scale figure error [1] . Interfer- 

omeric methods are commonly used for surface figure measurement. 

Due to the limitation of surface error of the reference surface, com- 

mercial Fizeau and Twyman-Green interferometers generally can’t get 

a precision higher than root mean square (RMS) value 𝜆/50, where 𝜆

is the wavelength of the light source [2] . To overcome the accuracy 

limitation in traditional commercial interferometers, the phase shifting 

point diffraction interferometer (PPDI) has been developed for spher- 

ical surface figure measurement on a sub-nanometer scale, which ap- 

plies a point aperture to generate a spherical wavefront as the ideal 

reference wavefront [3–8] . In the point diffraction interferometer with 

single-mode optical fibers as the point aperture, the numerical aperture 

of the diffracted wavefront is limited due to the fabrication limitation 

in sub-wavelength aperture optical fiber. We have developed a phase- 

shifting point diffraction interferometer that employs a tiny pinhole as 

point aperture. This system is developed for visible light (632.8 nm) with 

surface figure measurement accuracy higher than 𝜆/50 RMS [6,7] . This 

system can’t measure the spherical surface with high numerical aperture 

mainly due to the fabrication and mounting limitation of the imaging 

optics, which consists of some high numerical aperture optics. Thus, if 

we want to improve the numerical aperture of the test surface by our 
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phase-shifting point diffraction interferometer, we need to overcome the 

limitation in imaging optics. 

In this present study, we propose a lensless phase-shifting point 

diffraction interferometer (LPPDI) with a tiny pinhole for spherical mir- 

ror surface figure measurement, in which the interferograms used to 

reconstruct the surface figure are formed without imaging optics. Our 

LPPDI not only avoids the fabricating and mounting limitation of imag- 

ing optics, but also increases the measurable numerical aperture of the 

test surface. Fresnel diffraction calculations with a coordinate transfor- 

mation are studied as a means of reconstruction method for wavefront 

amplitude and phase. The Radon transform is used to determine the 

distance from the tiny pinhole to the CCD target, an important quality 

that has major influence on the accuracy of the diffraction calculations. 

Section 2 presents the construction of our LPPDI and the Fresnel diffrac- 

tion based numerical imaging process of the system. Section 3 shows 

the simulation of a spherical mirror figure measurement by our sys- 

tem. Section 4 experimentally validates the surface figure measurement 

process of a spherical mirror. Some concluding remarks are shown in 

Section 5 . 

2. System and principle 

2.1. Modified phase-shifting point diffraction interferometer system 

The system layout of the LPPDI is depicted in Fig. 1 . The expanded 

laser beam is focused on the pinhole by a focusing lens, the transmit- 
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Fig. 1. System layout of the MPPDI system. 

ted wave is diffracted into a nearly ideal spherical wave. The diameter 

of the pinhole is 1 um, which is fabricated by etching the Cr film with 

the focused ion-bean etching method. The diffraction spherical wave is 

separated into two parts: one serves as reference wave W R , while the 

other serves as the test wave W T . The test wave W T illuminates the 

tested spherical surface and is reflected by it, and then reflected by the 

pinhole substrate, finally combines with the reference wave W R . The 

test wavefront W T and reference wavefront W R are interfered and inter- 

ferograms are formed at the CCD target. Translating the test spherical 

surface by a piezoelectric transducer (PZT) scanner, the surface figure 

error of the test surface can be measured with phase shifting method. 

In the typical point diffraction interferometer system, the interferogram 

is imaged onto the CCD target by the imaging lens [5–7] . In our LP- 

PDI, the interferograms are formed without imaging optics, which not 

only avoids the fabricating and mounting limitation of imaging optics, 

but also increases the measurable numerical aperture of the test surface. 

Due to the lensless imaging, the CCD target is not the conjugated plane 

of the test surface, which is the exit pupil of our point diffraction in- 

terferometer, and the interferograms with edge diffraction are formed 

at the CCD target. So the wavefront measured by our point diffraction 

interferometer is different from the figure of the test mirror, and the 

wavefront on the test mirror must be reconstructed with the measured 

wavefront at the CCD target by some numerical reconstruction methods 

[9,10] . 

2.2. Numerical reconstruction process 

Fig. 2 is the schematic diagram of the LPPDI system for numerical 

reconstruction, in which we have removed the pinhole mirror and the 

system has been unfolded. The complex amplitude at a point ( x 1 , y 1 ) on 

the test mirror is U 1 ( x 1 , y 1 ), which can be written as 
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where D is the clear aperture of the test mirror, R is the radius of cur- 

vature of the test mirror, ΔW ( x 1 , y 1 ) is the surface figure error of the 

test mirror. The test wave illuminates the tested spherical surface and is 

reflected by it, the phase term aroused by the surface figure error twice 

as the surface figure error. So, the factor in front of the surface figure 

error is 2. The 𝑒𝑥𝑝 [ − 𝑖 
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2 𝑅 ] is the spherical factor in the phase map. 

And 𝑒𝑥𝑝 [ 𝑖 2 𝜋
𝜆
( 𝑥 1 + 𝑦 1 ) ] is the tilt factor in the phase map, which due to 

the tilt misalignment of test spherical surface [11,12] . Fresnel diffrac- 

tion calculations can be used as the numerical calculation method for 

the complex amplitude U 2 ( x 2 , y 2 ) at a point ( x 2 , y 2 ) on the CCD target, 

which can be expressed as [13] 
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where z is the distance between pinhole and CCD target. The reference 

wavefront can be viewed as an ideal spherical wavefront, and the com- 

plex amplitude of the reference wavefront at a point ( x 2 , y 2 ) on the CCD 

target can be written as 
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where A ( x 2 , y 2 ) is the amplitude of the reference wavefront. The inten- 

sity distribution at the CCD target can be expressed as 
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In our LPPDI system, based on phase-shifting algorithm, the wave- 

front amplitude and phase of complex amplitude U 2 ( x 2 , y 2 ) can be cal- 

culated by the interferograms which are registered by the CCD target. 

So, the wavefront on the test mirror U 1 ( x 1 , y 1 ) is reconstructed by Fres- 

nel diffraction calculations, which can be written as Eq. (5) . Then the 

surface figure profile can be got by the phase map of U 1 ( x 1 , y 1 ). 
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2.3. Fresnel diffraction calculations with a coordinate transformation 

Because of U 2 ( x 2 , y 2 ) is the spherically diverging wave, in the Fres- 

nel diffraction calculation process, if we want get precise reconstruction 

of U 1 ( x 1 , y 1 ), the number of sampling on the CCD target must be in- 

creased. Due to the limited number of pixels of CCD and computational 

efficiency, Fresnel diffraction calculations with a coordinate transforma- 

tion are chosen as a means of efficient and precise reconstruct method 

for wavefront amplitude and phase, which is based on Gaussian beam 

theory [14] . Let the origin of the coordinate system be located at the 

position of pinhole, which is the focus of the spherical wave U 1 ( x 1 , y 1 ) 

and U 2 ( x 2 , y 2 ). The coordinate transformations are given by 
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where 𝛼 is purely real, which can be chosen 𝛼 = 𝑧 . By the coordinate 

transformation as shown in Eq. (6) , transforming spherical wave U 1 ( x 1 , 

y 1 ) and U 2 ( x 2 , y 2 ) into equivalent collimated beam, and efficient fast 

Fourier transform (FFT) can be used in our diffraction calculate problem. 
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