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1. INTRODUCTION

Equation-based, object-oriented modelling languages and
tools have now established themselves as the best option
for the system-level modelling of physical and cyber-
physical systems, in particular when focusing on control
system studies and when multiple physical domains are
involved. In this field, the Modelica language (Mattsson
et al. (1998)) has emerged as a de-facto standard and
is supported by an increasing number of commercial and
open-source simulation tools.

Limiting our analysis to purely continuous-time mod-
els without events for simplicity, object-oriented models,
once reduced to flat form, are equivalent to systems of
differential-algebraic equations (DAE). The typical strat-
egy followed by Object-Oriented (OO) tools to simulate
such models, in particular by Modelica tools such as Dy-
mola or OpenModelica, is to first symbolically remove
trivial equations such as a ± b = 0 and a = ±b from the
system, and possibly to apply more sophisticated symbolic
simplifications. If necessary, they also symbolically reduce
its structural index to 1 by means of Pantelides’ algo-
rithm (Pantelides (1988)) and of the Dummy Derivatives
algorithm (Mattsson and Söderlind (1993)), in case of
high-index systems. Assuming a fixed set of states can be
chosen, the system model is thus brought to a simpler,
index-1 DAE form

F (x, ẋ, v, t) = 0,

where F (·) is a vector function, x is the vector of state vari-
ables, v the vector of algebraic (i.e., non-state) variables
and t is time. A procedure is then established to solve
the DAE system for (ẋ, v) assuming (x, t) known. In order
to do so, equations and variables are re-ordered so that
their incidence matrix is in block-lower-triangular (BLT)
form. Each block on the diagonal corresponds to a smaller
system of equations to be solved (either symbolically or
numerically), following an ordered sequence and exploiting
the previously computed values of variables appearing
earlier in the sequence. Thus, the system is conceptually

brought into state-space form with explicit ordinary dif-
ferential equations (ODEs) and output equations

ẋ = f(x, t)

v = g(x, t).

The computational procedure that corresponds to the
computation of f(x, t) and g(x, t) is then linked to an or-
dinary differential equation solver in order to numerically
compute the system transients.

State-of-the-art algorithms employed for this purpose are
currently of the single-rate type: based on the known value
of the state vector at a certain time x(t), and possibly
also on the values of previous time steps in case of multi-
step algorithms, the value at the next time step x(t +
h) is computed, where the step length h can be either
fixed or selected in order to comply with some pre-defined
error tolerance bound. The key feature of all single-rate
ODE integration algorithms is that the entire vector of
derivatives f(x, t) is evaluated at once at each time step t,
and possibly at other intermediate time values in the case
of high-order algorithms.

As the size of the system grows, this approach can become
increasingly inefficient for two classes of models. The first
is given by loosely coupled interconnections of sub-systems
with asynchronous localized activity, such as smart grids,
thermal or electrical power distribution networks, etc. The
second is given by the interconnection of slow, but com-
putationally demanding, sub-systems with fast, but easy
to compute, subsystems. One example are models of steam
boiler-turbine units coupled to the electrical generator and
transmission line models to form comprehensive power
system descriptions.

In both cases, assuming adaptive error control is used,
when the system shows fast changes in one of its local
or fast subsystems, short time steps are taken to limit
the error below the given tolerance, and this requires
recomputing the entire derivative vector f(x, t) at very
closely spaced time steps. This can be extremely inefficient,
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ẋ = f(x, t)

v = g(x, t).

The computational procedure that corresponds to the
computation of f(x, t) and g(x, t) is then linked to an or-
dinary differential equation solver in order to numerically
compute the system transients.

State-of-the-art algorithms employed for this purpose are
currently of the single-rate type: based on the known value
of the state vector at a certain time x(t), and possibly
also on the values of previous time steps in case of multi-
step algorithms, the value at the next time step x(t +
h) is computed, where the step length h can be either
fixed or selected in order to comply with some pre-defined
error tolerance bound. The key feature of all single-rate
ODE integration algorithms is that the entire vector of
derivatives f(x, t) is evaluated at once at each time step t,
and possibly at other intermediate time values in the case
of high-order algorithms.

As the size of the system grows, this approach can become
increasingly inefficient for two classes of models. The first
is given by loosely coupled interconnections of sub-systems
with asynchronous localized activity, such as smart grids,
thermal or electrical power distribution networks, etc. The
second is given by the interconnection of slow, but com-
putationally demanding, sub-systems with fast, but easy
to compute, subsystems. One example are models of steam
boiler-turbine units coupled to the electrical generator and
transmission line models to form comprehensive power
system descriptions.

In both cases, assuming adaptive error control is used,
when the system shows fast changes in one of its local
or fast subsystems, short time steps are taken to limit
the error below the given tolerance, and this requires
recomputing the entire derivative vector f(x, t) at very
closely spaced time steps. This can be extremely inefficient,

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 262

as the derivative of all other slow and/or loosely coupled
sub-systems will hardly change over such a short time
span, so that most of those computations will not in
fact bring any new useful information to the solver. The
problem is particularly severe if the computation of f(x, t)
is very CPU-intensive, as in the case of thermo-fluid
systems with sophisticated fluid models, and becomes
worse as the size of the model increases. Furthermore,
in the case of implicit algorithm, the computation and
inversion of the entire Jacobian ∂f/∂x is also performed.
The end result is that the simulation of larger models
becomes infeasible even if modern CPUs and state-of-the-
art tools are employed.

A recent paper by Ranade and Casella (2014) proposes to
introduce multi-rate algorithms in these scenarios, where
state-of-the-art object-oriented tools coupled to state-of-
the-art single-rate integration algorithms fail to provide
adequate performance. Multi-rate algorithms have been
studies since the early sixties, see, e.g., Rice (1960), Gear
and Wells (1984), Engstler and Lubich (1997), Savcenco
et al. (2007). Rigorous proofs exist regarding their stabil-
ity, convergence and accuracy properties, which are outside
the scope of this paper. However, thes algorithms have not
found application in the context of general-purpose object-
oriented system modelling so far.

The basic idea of these algorithms is that only for those
state variables whose integration error estimation exceeds
the tolerance, the computation is refined on a finer time
grid, while the values of states whose error is below the
threshold can be estimated by means of interpolation. In
this way, the expensive and useless re-computation of a
large portion of the vector f(x, t) (and, possibly, of its
Jacobian) is avoided.

A representative case study presented in Ranade and
Casella (2014) shows that the number of evaluations of
individual components of f(x, t) during the simulation
of a transient scales up with the square of the system
size, compared to the cubic increase obtained by standard
single-rate algorithms. It is then apparent that these
methods can provide huge advantages in simulation speed
as the size and degree of detail of the model increases.

A basic requirement for the use of multi-rate algorithms is
that at each time step, only a sub-set of the state derivative
vector f(x, t) needs to be computed. Furthermore, the
elements of this set can change at each time step in an
unpredictable way. This is trivial to obtain if the system
is originally described by explicit ODEs, but not in the
case of generic object-oriented models, which are given by
implicit DAEs. On the other hand, the well-established
procedure mentioned above to get the ODEs out of the
DAEs (see, e.g., Cellier and Kofman (2006) for further
details) is meant to efficiently compute the entire vector ẋ
at once.

The goal of this paper is thus to show how to efficiently
compute any sub-set of that vector, starting from an
object-oriented model, thus enabling the use of multi-
rate integration algorithms for the simulation of object-
oriented models. The ideas shown in this paper could be
used as a basis for the implementation within any OO
simulation tool.

The paper is structured as follows: Section 2 reviews
the basic concepts of multi-rate integration algorithms;
Section 3 describes the procedure to efficiently compute
any subset of state derivatives, while Section 4 illustrates
the application of the proposed procedure to an example
case. In Section 5, concluding remarks and future research
direction are given.

2. MULTI-RATE INTEGRATION

The basic idea of a multi-rate integration algorithm is to
split the system

ẋ = f(x, t) (1)

into a partitioned system characterized by active states xa

and of the latent states xl

ẋa = fa(xa, xl, t)

ẋl = fl(xa, xl, t).

The partitioned system is then integrated with a smaller
time step ha for the active part and with a larger time step
hl for the latent part. The coupling between the two parts
is handled by interpolations with high enough order to
guarantee the required precision. This idea can be applied
to a wide range of different integration algorithms, both
single-step (e.g., Runge-Kutta) and multi-step (e.g. BDF).

If the dynamics of the system is well known, one can think
of partitioning the set of states into two sub-sets which
are defined a priori. However, this requires the end user to
provide information to the object-oriented simulation tool
that is not trivial to obtain in general. The most suitable
multi-rate algorithms for the integration of OO models
are then those equipped with automatic error control. The
basic ideas behind those algorithms are sketched here for
the reader’s convenience, for further details see Ranade
and Casella (2014) and Savcenco et al. (2007).

A tentative solution of the entire system of ODEs is first
computed from tn−1 to tn with a global time step h. A
single-step method with embedded lower-order method
can be used to estimate the local integration error for each
component of the state vector. Those components whose
error is below the threshold are put in the latent partition,
while the other ones are refined by re-solving the active
part using two steps of lenght h/2, and using interpolation
to obtain the required values of xl at the intermediate
time steps. The procedure can then be recursively iterated:
after refining the grid on the active component, errors
are evaluated once more for each state variable; those
for which the error still exceed the threshold are further
refined, while the others end up in the latent partition.
The procedure is repeated until no further refinements are
necessary, then it can resume with another global time
step.

As already noted in the Introduction, each refinement step
for the active part will require one or more (depending on
the order of the algorithm) evaluations of a subset of the
state derivatives, using interpolated values for the latent
states. If the model being simulated is an object-oriented
one, i.e., it is defined by DAEs, it is in general not a good
idea to do this with procedures that correspond to the
explicit computation of each such derivatives, because this
might lead to a lot of duplicate computations, and to a very
inefficient procedure, and might not always be possible for
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at once.

The goal of this paper is thus to show how to efficiently
compute any sub-set of that vector, starting from an
object-oriented model, thus enabling the use of multi-
rate integration algorithms for the simulation of object-
oriented models. The ideas shown in this paper could be
used as a basis for the implementation within any OO
simulation tool.

The paper is structured as follows: Section 2 reviews
the basic concepts of multi-rate integration algorithms;
Section 3 describes the procedure to efficiently compute
any subset of state derivatives, while Section 4 illustrates
the application of the proposed procedure to an example
case. In Section 5, concluding remarks and future research
direction are given.

2. MULTI-RATE INTEGRATION

The basic idea of a multi-rate integration algorithm is to
split the system
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