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Abstract: The dynamic performance and steady-state control errors of many control schemes
improve with increasing model accuracy. This paper presents a method to determine the
symbolic expressions of the base inertial parameters and the corresponding regressor matrix
for models of robotic systems that are linear in the parameters. This is achieved using a
transformation based on the row space of the initially rank-deficient observation matrix.
Compared to the state-of-the-art methods the proposed approach can handle complex multi-
body structures for instance dynamic models with non-collocation of the position and the
torque sensors. In addition it applies for general linear parameter models. The procedure of
the algorithm is demonstrated considering the double pendulum dynamics as a closed-form
example. Furthermore, the performance of the approach is experimentally validated with the 7
degree of freedom medical robot DLR MIRO.

Keywords: Parameter identification, Reduced-order models, Least-squares identification,
Robot dynamics

1. INTRODUCTION

To increase the dynamic performance and to minimize the
steady-state control error, many modern control schemes
rely on model knowledge of the plant. Especially in the
field of robotics, model based control strategies, treated
among others in [14,20,9,13,1] were often used, including
computed torque, adaptive and impedance control. These
control schemes require an adequate model to compensate
for the dynamics effects (cf. impedance control) or a
complete model which represents the rigid body dynamics
of the considered robot (cf. computed torque and/or
adaptive control). In the case of an adaptive controller as
well as for control schemes, where the model parameters
have to be a priori known, the model structure and a
parameter identification method are crucial [21].

Due to the kinematics of spatial rotations, the inverse-
dynamic equations of multi-body systems are strongly
non-linear w.r.t. the state variables. It is a well known
fact that, deriving the inverse-dynamic model by the La-
grangian formalism (or by means of the iterative Newton-
Euler algorithm), the inertial parameters appear linearly
[11]; consequently, the identification model can be formu-
lated linearly w.r.t. the unknown parameters. This prop-
erty allows the identification of the inertial parameters
using linear least-squares methods.

When formulating a robot identification model, a challeng-
ing property of multi-body systems has to be considered:
the inertia of consecutive bodies is coupled via joints, i.e.,
in general the set of standard inertial parameters (i.e.,
mass, mass moment first and second order for each body)
consists of dependencies. Furthermore, some parameters
do not affect the dynamics. In the case of using the
standard inertial parameters, the observation matrix of
the identification model is singular and not invertible.

Therefore, only the set of identifiable parameters can be
estimated, which correspond to non-zero and linearly in-
dependent columns of the observation matrix.

To calculate the minimal set of identifiable parameters,
which are often referred to as base inertial parame-
ters (BIP), several algorithms have been proposed [12,3–
6,10,17]. Most of these algorithms use a manual search
strategy which can be applied to a special class of robot
structures and aim to derive the identifiable parameters in
symbolic form. In [12,4–6,17] the structure of the multi-
body system is analyzed. From the structure of the multi-
body system it is deduced which parameters do not affect
the model output and can be cancelled out and which
parameters consist of dependencies and can be grouped.
By the mentioned method several algorithms are derived
to calculate the BIP of robot structures, where only single
degree of freedom joints connect apparent bodies. Two
numerical approaches to calculate the BIP have been pro-
posed in [3]. One of the methods is based on singular
value decomposition (SVD) and the other method is based
on QR decomposition. Both methods are applicable for
a large class of mechanical systems and straightforward
to implement. The set of BIP is obtained in numeric
form. The SVD approach given by [3] can be extended
to obtain the BIP in symbolic form. Therefore, the work
in [10] applies the SVD approach to get the weighting
parameters, numerically. Then a search algorithm based on
physical dimensional analysis is used to find corresponding
symbolic expressions. Therefore also the structure of the
dynamic model has to be taken into account.

In this paper, we present a general algorithm to derive
the symbolic expressions of a unique set of identifiable
parameters and the corresponding reduced regressor ma-
trix of general linear parameter models. We propose to
transform the unknown parameter vector into the row

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 316

A Closed-Form Approach to Determine the

Base Inertial Parameters of Complex

Structured Robotic Systems

J. Klodmann, D. Lakatos, C. Ott, A. Albu-Schäffer
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Institute of Robotics and Mechatronics, German Aerospace Center (DLR),
D-82234 Oberpfaffenhofen, Germany (e-mail: julian.klodmann@dlr.de).

Abstract: The dynamic performance and steady-state control errors of many control schemes
improve with increasing model accuracy. This paper presents a method to determine the
symbolic expressions of the base inertial parameters and the corresponding regressor matrix
for models of robotic systems that are linear in the parameters. This is achieved using a
transformation based on the row space of the initially rank-deficient observation matrix.
Compared to the state-of-the-art methods the proposed approach can handle complex multi-
body structures for instance dynamic models with non-collocation of the position and the
torque sensors. In addition it applies for general linear parameter models. The procedure of
the algorithm is demonstrated considering the double pendulum dynamics as a closed-form
example. Furthermore, the performance of the approach is experimentally validated with the 7
degree of freedom medical robot DLR MIRO.

Keywords: Parameter identification, Reduced-order models, Least-squares identification,
Robot dynamics

1. INTRODUCTION

To increase the dynamic performance and to minimize the
steady-state control error, many modern control schemes
rely on model knowledge of the plant. Especially in the
field of robotics, model based control strategies, treated
among others in [14,20,9,13,1] were often used, including
computed torque, adaptive and impedance control. These
control schemes require an adequate model to compensate
for the dynamics effects (cf. impedance control) or a
complete model which represents the rigid body dynamics
of the considered robot (cf. computed torque and/or
adaptive control). In the case of an adaptive controller as
well as for control schemes, where the model parameters
have to be a priori known, the model structure and a
parameter identification method are crucial [21].

Due to the kinematics of spatial rotations, the inverse-
dynamic equations of multi-body systems are strongly
non-linear w.r.t. the state variables. It is a well known
fact that, deriving the inverse-dynamic model by the La-
grangian formalism (or by means of the iterative Newton-
Euler algorithm), the inertial parameters appear linearly
[11]; consequently, the identification model can be formu-
lated linearly w.r.t. the unknown parameters. This prop-
erty allows the identification of the inertial parameters
using linear least-squares methods.

When formulating a robot identification model, a challeng-
ing property of multi-body systems has to be considered:
the inertia of consecutive bodies is coupled via joints, i.e.,
in general the set of standard inertial parameters (i.e.,
mass, mass moment first and second order for each body)
consists of dependencies. Furthermore, some parameters
do not affect the dynamics. In the case of using the
standard inertial parameters, the observation matrix of
the identification model is singular and not invertible.

Therefore, only the set of identifiable parameters can be
estimated, which correspond to non-zero and linearly in-
dependent columns of the observation matrix.

To calculate the minimal set of identifiable parameters,
which are often referred to as base inertial parame-
ters (BIP), several algorithms have been proposed [12,3–
6,10,17]. Most of these algorithms use a manual search
strategy which can be applied to a special class of robot
structures and aim to derive the identifiable parameters in
symbolic form. In [12,4–6,17] the structure of the multi-
body system is analyzed. From the structure of the multi-
body system it is deduced which parameters do not affect
the model output and can be cancelled out and which
parameters consist of dependencies and can be grouped.
By the mentioned method several algorithms are derived
to calculate the BIP of robot structures, where only single
degree of freedom joints connect apparent bodies. Two
numerical approaches to calculate the BIP have been pro-
posed in [3]. One of the methods is based on singular
value decomposition (SVD) and the other method is based
on QR decomposition. Both methods are applicable for
a large class of mechanical systems and straightforward
to implement. The set of BIP is obtained in numeric
form. The SVD approach given by [3] can be extended
to obtain the BIP in symbolic form. Therefore, the work
in [10] applies the SVD approach to get the weighting
parameters, numerically. Then a search algorithm based on
physical dimensional analysis is used to find corresponding
symbolic expressions. Therefore also the structure of the
dynamic model has to be taken into account.

In this paper, we present a general algorithm to derive
the symbolic expressions of a unique set of identifiable
parameters and the corresponding reduced regressor ma-
trix of general linear parameter models. We propose to
transform the unknown parameter vector into the row

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 316



 J. Klodmann et al. / IFAC-PapersOnLine 48-1 (2015) 316–321 317

space of the initially rank deficient observation matrix.
This leads to a minimum set of identifiable parameters,
fully describing the model, and thus to minimum degrees of
freedom in the solution of the linear least-squares problem.
Regarding the exemplified derivation of the set of BIP of
robots, the non-singular linear row space transformation
is derived symbolically, without analyzing the structure
of the model, in contrast to [12,4–6,17]. Furthermore the
method applies to complex multi-body structures with
multi-degree-of-freedom joints. In addition, as exemplified
in the experimental part, the method can be applied to
dynamic models with non-collocated placement of the po-
sition and torque sensors. Therefore, the proposed closed-
form approach is more general than the methods in [12,4–
6,10,17]. In contrast to the numeric approaches [3], the
output of our algorithm is the identification model in
symbolic form. This is an advantage, since the resulting
model can be further used, for instance, to find optimally
exciting observations for the identification procedure, e.g.
robot trajectories [19,21] or to reduce the computational
costs to compute the model, e.g. the inverse dynamics of
the robot (cf. derivation of BIP).

The paper is organized as follows: In Section 2.2 we present
the method to determine the identifiable parameter model.
The procedure of the closed form algorithm is exemplary
demonstrated for the double pendulum dynamics in Sec-
tion 3. In Section 4, we validate the performance of the
method in experiments with a complex structured robotic
system. A brief conclusion is given in Section 5.

2. IDENTIFIABLE PARAMETER MODEL

In this section, we present a method to derive the sym-
bolic set of identifiable parameters and the corresponding
regressor matrix for linear parameter models. Thereby,
we consider exemplary the inverse dynamics of multi-
body systems. First, we introduce the identification model.
Then, we apply a transformation such that the resulting
model is linear in the BIP.

2.1 Linear parameter model

The inverse dynamics of a multi-body system can be
represented by equations of the form

Γ(q, q̇, q̈, ζ) = M(q, ζ)q̈ +C(q, q̇, ζ)q̇ + g(q, ζ). (1)

Herein q ∈ R
m are the m generalized coordinates and

M ∈ R
m×m, C ∈ R

m×m and g ∈ R
m are inertia

matrix, Coriolis/centrifugal matrix and gravity vector,
respectively.

The inertial properties of the ith body are determined by
the inertial tensor

Φi =

�

XXi XYi XZi

Y Yi Y Zi

sym. ZZi

�

, (2)

the vector of mass moments first order

MSi = [mXi,mYi,mZi]
T

(3)

and mass moment zeroth order mi. These parameters can
be summarized for each body in

ζi = [XXi, XYi, XZi, Y Yi, Y Zi, ZZi,

mXi,mYi,mZi,mi]
T

(4)

and for nb bodies in

ζ =
�

ζT
1 , ζ

T
2 , . . . , ζ

T
nb

�T

. (5)

The vector ζ is known as standard inertial parameter
vector of the multi-body system.

The inverse dynamic model (1) is linear w.r.t. the standard
inertial parameters [11] and can be rewritten as

Γ(q, q̇, q̈, ζ) =
∂Γ(q, q̇, q̈, ζ)

∂ζ
ζ = X(q, q̇, q̈)ζ. (6)

2.2 Linear parameter identification for non-linear systems

In order to estimate ζ from measurements of q(t), q̇(t),
q̈(t) and Γ(t), an overdetermined system of linear equa-
tions,

Wζ = Y (7)

can be considered. Thereby, the observation matrix

W =
�

X(x(t1))
T ,X(x(t2))

T , . . . ,X(x(tk))
T
�T

, (8)

is a stacked matrix, where ti ∈ R is time and x : R → R
c

are c independent variables (e.g., generalized coordinates
and their time derivatives), the regressor matrix X con-
sists of non-linear functions mapping from R

c into R
m×n,

and ζ ∈ R
n is the parameter vector. Similarly,

Y =
�

y(t1)
T ,y(t2)

T , . . . ,y(tk)
T
�T

(9)

is a stacked vector of dependent variables y ∈ R
m (system

outputs). In the case of identifying an inverse dynamic

model of the form (1), x = (qT , q̇T , q̈T )T ∈ R
c=3m is

a set of the generalized joint coordinates and their time
derivatives and y = Γ are measured joint torques.

If the number of observations k is chosen sufficiently large,
i.e., km ≥ n, a unique (least-squares) solution exists
when rank(W ) = n. In general for identification models,
which are linear in the standard inertial parameters, the
observation matrix is rank deficient, i.e., rank(W ) <
n. Therefore, the goal is to find the reduced regressor
matrix X̄(x) and corresponding identifiable parameters
ζ̄, such that the resulting stacked matrix W̄ has full rank.
The basic idea is to transform the vector of unknown
parameters ζ of the linear system (7) to the row space
of the matrix W .

Theorem 1. Consider the linear system of equations (7)
with W ∈ R

km×n defined by (8), where km ≥ n and
r = rank (W ) < n. Then, there exists a matrix B with
generalized pseudo-inverse

B† = SBT (BSBT )−1 (10)

and metric S such that

W̄ ζ̄ = Y , (11)

where

W̄ =









X̄(x(t1))
X̄(x(t2))

...
X̄(x(tk))









∈ R
km×r , (12)

X̄(x) = X(x)B† , (13)

can be uniquely solved for ζ̄ in a least-square sense.
Thereby,

ζ̄ = Bζ , (14)

represent the identifiable parameters. Additionally, due to
this particular choice of B, to be equal to the non-zero
rows of the reduced-row echelon form EW of W , B is
unique.
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