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1. INTRODUCTION

The Wheeled Inverted Pendulum (WIP) - and its com-
mercial version, the Segway - has gained interest in the
past several years due to its maneuverability and simple
construction (see e.g. Grasser et al. [2002], Segway [2015,
Jan]). Other robotic systems based on the WIP are becom-
ing popular as well in the robotic community for human
assistance or transportation as can be seen in the works of
Li et al. [2012], Nasrallah et al. [2007], Baloh and Parent
[2003]. A WIP consists of a vertical body with two coaxial
driven wheels.

The stabilization and tracking control for the WIP is chal-
lenging: the system belongs to the class of underactuated
mechanical systems, since the control inputs are less than
the number of configuration variables: There are a total of
two control variables τ1 and τ2 which are the torques ap-
plied to rotate the wheels, and six configuration variables,
namely, the x- and y- position of the WIP on the horizontal
plane, the relative rotation angle of each of the wheels with
respect to the body φ1 and φ2, the orientation angle θ, and
the tilting angle α. In addition, the system is restricted by
nonholonomic (nonintegrable) constraints and is thus not
smoothly stabilizable at a point as proven by Brockett
[1983]. These constraints do not restrict the state space on
which the dynamics evolve, but the motion direction at a
given point: The rolling constraint impedes a sideways mo-
tion, and the forward velocity of the WIP and its yaw rate
are directly given by the angular velocity of the wheels.
Wheeled robots have largely been considered as purely
kinematic systems, due to the simplification in the motion
and controllability analysis. The WIP, however, needs to
be stabilized by dynamic effects, such that the complete
dynamics need to be taken into account. In mechanical
systems with nonholonomic constraints the configuration
space Q is a finite dimensional smooth manifold, TQ is the
tangent bundle - the velocity phase space - and a smooth
(non-integrable) distribution D ⊂ TQ defines the con-

straints 1 . While traditional approaches like the Lagrange-
d’Alembert equations lead to the equations of motion
of nonholonomic mechanical systems (see, e. g., Pathak
et al. [2005]), geometric approaches help to understand the
structure and the intrinsic properties of the system. There
is a lot of work regarding the modeling of nonholonomic
systems, see for example Bloch [2003], Ostrowski [1999],
Bloch et al. [1996], Bloch et al. [2009] and the references
therein. These geometric tools help understand the mech-
anism of locomotion, i. e., the way motion is generated by
changing the shape of the mechanical system.

Symmetries can be exploited to develop dynamical models
in a reduced space. Roughly speaking, the Lagrangian L
exhibits a symmetry if it does not depend on one configu-
ration variable, lets say, qj . The variable qj is called cyclic.
The Lagrangian is thus invariant under transformations in
cyclic coordinates. Lie group action and symmetry reduc-
tion has been successfully applied to model other types
of nonholonomic mechanical systems in the differential
geometric framework. See for example the works by Bloch
et al. [1996], Ostrowski [1999], Gajbhiye and Banavar
[2012]. As shown, e. g., by Ostrowski [1999], the resulting
equations can be put in a simplified form containing apart
from the reduced equations of motion, also the momentum
and reconstruction equation, which describe the dynamics
of the system along the group directions. That is, how the
system translates and rotates in space due to the change
in the shape variables. Bloch et al. [2009] further show
the advantage of using the Hamel equations to obtain the
reduced nonholonomic equations of motion: The momen-
tum equation is in this case given in a body frame which
appears to be more natural than in a spatial frame, for the
latter is rarely conserved for systems with nonholonomic
constraints. The derivation of the reduced nonholomonic
equations can be done as well using the constrained La-
grangian and a so-called Ehresmann connection which
relates motion along the shape directions with the motion
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along the group directions. The approach is based on
taking admissible virtual displacements from the Lagrange
d’Alembert principle. Admissible means, that the varia-
tions satisfy the constraints (given by the connection).
This paper follows this modeling tool. Note that we are
not imposing the constraints before taking variations, we
are taking variations according to the constraints.

Several control laws have been applied to the WIP, mostly
using linearized models as can be seen in Li et al. [2012].
There is still the need to exploit the nonlinear geometric
structure of the WIP to stabilize and control the system
using coordinate-free control laws. Nasrallah et al. [2007]
develop a model based on the Euler-Rodrigues parameters
and analyze the controllability of the WIP moving on
an inclined plane. Pathak et al. [2005] develop a model
using the Lagrange-d’Alembert equations and check the
strong accessibility condition. The aim of this note is to
explore the motion of the system in the reduced (shape)
space which lead to some net displacement of the mobile
robot (motion in the group space) independently from
the starting point. Additionally, we present the equations
of motion in more suitable coordinates 2 for control or
trajectory planning purposes: Since the shape space of
the WIP is not fully actuated, the control task becomes
difficult in these coordinates. The choice of the model can
be done depending on which better suits the task.

Notation: Contrary to most of the literature, we use
here the matrix/vector representation instead of the index
convention. Readers are encouraged to read the referred
literature for the wide-used index convention. Further, we
use the following simplified notation for the transposed

Jacobian: ∂T
x =

(
∂
∂x

)T
.

2. EQUATIONS OF MOTION IN SHAPE SPACE

Consider the configuration space Q = G × S, where S
denotes the shape space and G denotes the group space: Q
is a trivial principal bundle with fibers G over a base man-
ifold S. The shape space, as the name suggests, denotes
the space of the possible shapes of the system. As stated
by Ostrowski [1999], this division is natural in mechanisms
that locomote, like mobile robots, where position changes
are generated by (mostly cyclic) changes in the shape.
See for example the oscillations of a snake-board which
create the forward motion, or the rotation of the wheels of
a mobile platform resulting in a platforms displacement
due to the rolling-without-slipping interaction with the
environment. The internal shapes of the WIP are solely
defined by the relative angles of the wheels with respect to
the body. And since the gravity acts on the WIP depending
on the tilting angle (the gravity breaks the symmetry), and
it is crucial for the stability of the system, the tilting angle
is also considered as a shape variable (more on that later).
Note that the net motion resulting from a change in shape
is independent from the initial position (we assume, that
the WIP is moving on a horizontal plane). Mathematically
speaking is this nothing but an invariance (symmetry)
of the Lagrangian under a change in position (group)
coordinates. We are therefore interested in the reduced
equations of motion in shape space variables.

2 The same equations of motion can be found in Pathak et al. [2005]

On the configuration space Q = G × S, the Lagrangian
is a function L : TG × TS → R and the distribution
characterizing the nonholonomic constraints is given by
D ⊂ TQ. A curve q(t) onQ is said to satisfy the constraints
if q̇(t) ∈ Dq, ∀t. This nonholonomic restriction can also be
given in local coordinates as

ġ + A
T ṡ = 0, (1)

where g ∈ G and s ∈ S, and the matrix A describes how
ġ and ṡ are related to each other due to the constraints.
Recall that the equations governing the dynamics of the
system satisfy the Lagrange-d’Alembert Principle (Fext

denote the external forces)

δ

∫
L(q, q̇)dt+

∫
FT
ext δq dt = 0, (2)

which is equivalent to∫ [
d

dt

(
∂L

∂q̇

)
−

(
∂L

∂q

)
− FT

ext

]
δq dt = 0. (3)

Independent from the Lie-group structure, we can intrinsi-
cally eliminate the Lagrange-multipliers which arise from
the constraint forces and write the reduced equations of
motion using the Ehresmann connection (1), which is
nothing but a way to split the tangent space into a hori-
zontal (tangent to the shape space) and a vertical (tangent
to the group space) part 3 . The curves q(t) solving the
equations of motion need to satisfy the constraints. Thus,
the variations δq = (δs, δg) are of the form δg +A

T δs = 0
(see Bloch et al. [1996]). We assume, that the external
forces are input torques τ and only act on the shape
variables, i. e., FT

ext δq = τT δs. This assumption is valid,
since we will consider group space motion only as a result
of a change in the shape variables, and we neglect friction
forces. Equation (3) takes the following form∫ [

d

dt

(
∂L

∂ṡ

)
−

(
∂L

∂s

)
− τT

]
δs dt

−

∫ [
d

dt

(
∂L

∂ġ

)
−

(
∂L

∂g

)]
A

T δs dt = 0. (4)

To eliminate the group velocities ġ, define the constrained
Lagrangian

Lc(s, g, ṡ) = L(s, g, ṡ,−AT ṡ). (5)

The following relationships hold
∂Lc

∂ṡ
=

∂L

∂ṡ
+

∂L

∂ġ

∂ġ

∂ṡ
=

∂L

∂ṡ
−

∂L

∂ġ
A

T (6)

∂Lc

∂s
=

∂L

∂s
+

∂L

∂ġ

∂ġ

∂s
=

∂L

∂s
−

∂L

∂ġ

∂(AT ṡ)

∂s
(7)

∂Lc

∂g
=

∂L

∂g
+

∂L

∂ġ

∂ġ

∂g
=

∂L

∂g
−

∂L

∂ġ

∂(AT ṡ)

∂g
. (8)

According to (4), and using the mentioned relationships
(6) - (8), the equations of motion in terms of the con-
strained Lagrangian Lc are given by

d

dt

(
∂T
ṡ Lc

)
− ∂T

s Lc + A ∂T
g Lc = τ − B ∂T

ġ L, (9)

where

B ∂T
ġ L =

d

dt

(
A ∂T

ġ L
)
− A

d

dt

(
∂T
ġ L

)

+
(
A ∂T

g (A
T ṡ)− ∂T

s (A
T ṡ)

)
∂T
ġ L

⇒ B = Ȧ− ∂T
s (A

T ṡ) + A ∂T
g (A

T ṡ). (10)

3 The reader is referred to the references for detailed information
regarding Ehresmann connections
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along the group directions. The approach is based on
taking admissible virtual displacements from the Lagrange
d’Alembert principle. Admissible means, that the varia-
tions satisfy the constraints (given by the connection).
This paper follows this modeling tool. Note that we are
not imposing the constraints before taking variations, we
are taking variations according to the constraints.

Several control laws have been applied to the WIP, mostly
using linearized models as can be seen in Li et al. [2012].
There is still the need to exploit the nonlinear geometric
structure of the WIP to stabilize and control the system
using coordinate-free control laws. Nasrallah et al. [2007]
develop a model based on the Euler-Rodrigues parameters
and analyze the controllability of the WIP moving on
an inclined plane. Pathak et al. [2005] develop a model
using the Lagrange-d’Alembert equations and check the
strong accessibility condition. The aim of this note is to
explore the motion of the system in the reduced (shape)
space which lead to some net displacement of the mobile
robot (motion in the group space) independently from
the starting point. Additionally, we present the equations
of motion in more suitable coordinates 2 for control or
trajectory planning purposes: Since the shape space of
the WIP is not fully actuated, the control task becomes
difficult in these coordinates. The choice of the model can
be done depending on which better suits the task.

Notation: Contrary to most of the literature, we use
here the matrix/vector representation instead of the index
convention. Readers are encouraged to read the referred
literature for the wide-used index convention. Further, we
use the following simplified notation for the transposed

Jacobian: ∂T
x =

(
∂
∂x

)T
.

2. EQUATIONS OF MOTION IN SHAPE SPACE

Consider the configuration space Q = G × S, where S
denotes the shape space and G denotes the group space: Q
is a trivial principal bundle with fibers G over a base man-
ifold S. The shape space, as the name suggests, denotes
the space of the possible shapes of the system. As stated
by Ostrowski [1999], this division is natural in mechanisms
that locomote, like mobile robots, where position changes
are generated by (mostly cyclic) changes in the shape.
See for example the oscillations of a snake-board which
create the forward motion, or the rotation of the wheels of
a mobile platform resulting in a platforms displacement
due to the rolling-without-slipping interaction with the
environment. The internal shapes of the WIP are solely
defined by the relative angles of the wheels with respect to
the body. And since the gravity acts on the WIP depending
on the tilting angle (the gravity breaks the symmetry), and
it is crucial for the stability of the system, the tilting angle
is also considered as a shape variable (more on that later).
Note that the net motion resulting from a change in shape
is independent from the initial position (we assume, that
the WIP is moving on a horizontal plane). Mathematically
speaking is this nothing but an invariance (symmetry)
of the Lagrangian under a change in position (group)
coordinates. We are therefore interested in the reduced
equations of motion in shape space variables.

2 The same equations of motion can be found in Pathak et al. [2005]

On the configuration space Q = G × S, the Lagrangian
is a function L : TG × TS → R and the distribution
characterizing the nonholonomic constraints is given by
D ⊂ TQ. A curve q(t) onQ is said to satisfy the constraints
if q̇(t) ∈ Dq, ∀t. This nonholonomic restriction can also be
given in local coordinates as

ġ + A
T ṡ = 0, (1)

where g ∈ G and s ∈ S, and the matrix A describes how
ġ and ṡ are related to each other due to the constraints.
Recall that the equations governing the dynamics of the
system satisfy the Lagrange-d’Alembert Principle (Fext

denote the external forces)

δ

∫
L(q, q̇)dt+

∫
FT
ext δq dt = 0, (2)

which is equivalent to∫ [
d

dt

(
∂L

∂q̇

)
−

(
∂L

∂q

)
− FT

ext

]
δq dt = 0. (3)

Independent from the Lie-group structure, we can intrinsi-
cally eliminate the Lagrange-multipliers which arise from
the constraint forces and write the reduced equations of
motion using the Ehresmann connection (1), which is
nothing but a way to split the tangent space into a hori-
zontal (tangent to the shape space) and a vertical (tangent
to the group space) part 3 . The curves q(t) solving the
equations of motion need to satisfy the constraints. Thus,
the variations δq = (δs, δg) are of the form δg +A

T δs = 0
(see Bloch et al. [1996]). We assume, that the external
forces are input torques τ and only act on the shape
variables, i. e., FT

ext δq = τT δs. This assumption is valid,
since we will consider group space motion only as a result
of a change in the shape variables, and we neglect friction
forces. Equation (3) takes the following form∫ [

d

dt

(
∂L

∂ṡ

)
−

(
∂L

∂s

)
− τT

]
δs dt

−

∫ [
d

dt

(
∂L

∂ġ

)
−

(
∂L

∂g

)]
A

T δs dt = 0. (4)

To eliminate the group velocities ġ, define the constrained
Lagrangian

Lc(s, g, ṡ) = L(s, g, ṡ,−AT ṡ). (5)

The following relationships hold
∂Lc

∂ṡ
=

∂L

∂ṡ
+

∂L

∂ġ

∂ġ

∂ṡ
=

∂L

∂ṡ
−

∂L

∂ġ
A

T (6)

∂Lc

∂s
=

∂L

∂s
+

∂L

∂ġ

∂ġ

∂s
=

∂L

∂s
−

∂L

∂ġ

∂(AT ṡ)

∂s
(7)

∂Lc

∂g
=

∂L

∂g
+

∂L

∂ġ

∂ġ

∂g
=

∂L

∂g
−

∂L

∂ġ

∂(AT ṡ)

∂g
. (8)

According to (4), and using the mentioned relationships
(6) - (8), the equations of motion in terms of the con-
strained Lagrangian Lc are given by

d

dt

(
∂T
ṡ Lc

)
− ∂T

s Lc + A ∂T
g Lc = τ − B ∂T

ġ L, (9)

where

B ∂T
ġ L =

d

dt

(
A ∂T

ġ L
)
− A

d

dt

(
∂T
ġ L

)

+
(
A ∂T

g (A
T ṡ)− ∂T

s (A
T ṡ)

)
∂T
ġ L

⇒ B = Ȧ− ∂T
s (A

T ṡ) + A ∂T
g (A

T ṡ). (10)

3 The reader is referred to the references for detailed information
regarding Ehresmann connections
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