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Germany (e-mail: juergen.geiser@ruhr-uni-bochum.de).

Abstract: We are motivated to model particle Coulomb collisions to simulate the physical
interaction of charged particles with electromagentic fields. Such collision operators can be
modelled by a Langevin equation, which is a multiscale stochastic differential equation. Due
to its multiple scales, we have to apply a multiscale method simultaneously on widely different
scales. We extend standard splitting approaches to such multiscale equations. In the numerical
experiments, we discuss our results for the different scales.
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1. INTRODUCTION

We are motivated to apply a multiscale model to solve
Langevin equations, which are used to simulate the relax-
ation of a Fokker–Planck equation with Coulomb collisions
in sufficiently dense plasma applications (e.g., magnetic
fusion, inertial fusion), see Nanbu (1997) and Cohen et al.
(2010).

The particle transport and Coulomb collision (long-range
collision) in a dense plasma can be modelled by the
following multiscale equation:
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where fα(x,v) is the phase-space distribution function
(density) of a charged plasma species α submitted to
electromagnetic field (E,B). Further the collision operator
of the Fokker-Planck (forward Kolmogorov) equation is
given by the Landau’s collision term, see Landau (1937)
and Risken (1996),
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where the sum is over the index β of the plasma charged-
particle species, qβ is the charge of species β, fβ(x,v

′)
is the phase-space distribution function (density) of a
charged plasma species β, the relative velocity is given as
u = v− v′, u = |u| and λ is the Coulomb logarithm. The
collision parameters (in the vector notation), we have the
drag and diffusion coefficients, are derived from a classical
theory of the screened Coulomb collision in the Fokker-
Planck limit, see Nanbu (1997).

To solve such a delicate equation (2), it is important to
develop accurate numerical algorithms, which take into
account the nonlinear and singular perturbed collision
operator.

For a simpler test problem, we consider a scalar particle
transport and collision in an electric field, which has differ-
ent scales, e.g., blow-up scales (impact oscillators) and also
oscillating scales (harmonic oscillators), see Dimits et al.
(2010) and Manheimer et al. (1997).

We consider for the simpler model the distribution func-
tion f of a particle in a dense plasma problem and we
apply the appropriate description with a one-dimensional
Fokker–Planck (FP) equations in the phase space (x, v):
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where we assume to have a nonlinear and singular per-
turbed electric-field E(x, ǫ) = ǫ 2

x2 − 2x, ǫ ∈ (0, 1] and
ǫ is the perturbation parameter. The Coulomb collision
parameters are γ (thermostat parameter) and β (inverse
temperature), see Bou-Rabee et al. (2012). We concentrate
on the nonlinear molecular collisions (Coulomb collisions),
which are long range collisions.

The present paper is organized as follows. In Section 2, we
introduce the splitting methods for the model problem.
In Section 3, we discuss the improvement of the splitting
method based on the method of multiple scales. The
extension to a multiscale splitting scheme is discussed in
Section 4. The numerical results are discussed in Section
5 and we draw some conclusions in Section 6.

2. SPLITTING METHODS

Splitting methods are important when we can split differ-
ential equations into a sum of two or more parts and solve
each parts simpler than the original, see McLachlan et al.
(2002).
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Based on our problem, we can decompose the FP equation
(3) into two parts with different time-scales:

• Transport Part (slow time-scale):
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+ v
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+ E(x, ǫ)

∂f

∂v
= 0, (4)

• Collision Part (fast time-scale):
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We are following the characteristics of the space x and
velocity v of equations (4)-(5) and obtain the Langevin-
like equations, which are the following multiscale nonlinear
SDE equations, see also Bou-Rabee et al. (2012):

• Ordinary differential equation (ODE)

dx

dt
= v,

dv

dt
= E(x, ǫ), (6)

• Stochastic differential equation (SDE)

dx
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= 0, dv = −γvdt+

√
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where W is a one-dimensional Brownian motion. For
the SDE part, we have the analytical solution:

v(t) = exp(−γt) +
√

2β−1γ
∫ t

0
exp(−γ(t− s)) dW (s).

For the splitting method, we apply the numerical methods
for the transport part, see Hockney et al. (1985), and fast
SDE solver or analytical solutions for the collision part,
see Kloeden (1992).

Then, we result in the full equation:

dx

dt
= v, (8)

dv(t) = E(x, ǫ)dt− γvdt+
√

2β−1γdW, (9)

where W is a one-dimensional Brownian motion.

In the following, we present some standard methods, see
Geiser (2013), to solve the full equations (8)-(9) with
respect to the discussed splitting ideas. We apply an
AB splitting and semi-analytical method (later called
analytical method):

• AB-Splitting:

v(tn+1) = v(tn) + ∆t E(x(tn), ǫ) (10)

−∆t γv(tn) +
√

2β−1γ∆W,

x(tn+1) = x(tn) + ∆t v(tn+1), (11)

where ∆W = W (tn+1−W (tn)) = rand
√
∆t and rand

is the Gaussian normal distribution N(0, 1).
• Semi-analytical method:
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where we have applied the stochastic integral as
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=
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∑

j=0
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tn,j + tn,j+1

2
)) (W (tn,j+1)−W (tn,j)),

∆t = (tn+1 − tn)/N, tn,j = ∆t+ tn,j−1, tn,0 = tn.

For both methods, we have the problems, that we do
not take into account the multiscale problem, see Le Bris
(2009) and Geiser (2013). Here, we discuss the extensions,
that are necessary to consider and contribute the multiple
time-scales to a novel method:

• Symplecticity for the harmonic oscillator for particles
in the electric field with ǫ → 0).

• Higher order resolution for the singular oscillator
(impact oscillator) for particles in the electric field
with ǫ → 1).

3. THE METHOD OF MULTIPLE SCALES

In the following, we discuss the method of multiple scales,
which is used for problems in which the solutions depend
simultaneously on widely different scales, see Kevorkian
et al. (1996) and Murdock (1991). Typical examples
are highly oscillatory solutions over time scales that are
greater than the period of the known oscillations, see
Johnson (2005).

We apply the method of multiple scale and rewrite the
equations (8)-(9) to the second order SDE:
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+
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, (15)

where x(0) and dx(0)
dt

are the initial conditions (e.g.,

(x(0), v(0))⊤ = (0.5, 0.5)⊤) and E(x, ǫ) = ǫ 2
x3 − 2x.

Based on the nonlinear and singular perturbed electric
field, we have a switch between an harmonic oscillator
E(x, 0) = −2x, and a highly oscillatory solutions related
to E(x, 1) = 2

x3 − 2x for x → 0. Here, we have to employ
multiscale modelling to take into account the different
scales and develop a new method based on a splitting
approach.

For the multiscale problem, we look for solutions x(t, ǫ)
and apply the following hierarchical ordering:

x(t, ǫ) = x0(t) + ǫx1(t) +O(ǫ2), (16)

with the initial conditions x(0, ǫ) = x(0) and dx(0,ǫ)
dt

= v(0)
to the multiple scale equation (15).

The leading order perturbation equation with O(1) is
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x0(0) = x(0),
dx0

dt
= v(0). (18)

The next order perturbation equation with O(ǫ) is
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= −2x1 +

2

x3
0

− γ
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dt
dt+
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