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1. INTRODUCTION

Mathematical models of dynamic systems are required in most
area of scientific enquiry and take various forms, such as dif-
ferential equations, difference equations, state-space equations
and transfer functions. The most widely used approach to math-
ematical modeling involves the construction of mathematical
equations based on physical laws that are known to govern the
behaviour of the system. While the advantage of these methods
relies on the deep physical insight of the resulting model, their
main drawback is the complexity of the model that makes them
difficult to be used in applications such as control system de-
sign, prediction or decision making.
An alternative to physically-based mathematical modeling is
the so-called data-based system identification, which can be
applied to any system where experimental data are avail-
able. A large scope of system identification approaches has
been developed over the past decades. Amongst these, we can
cite the prediction error and maximum-likelihood frameworks
(see e.g. Ljung (1999); Söderström and Stoica (1989); Young
(2011)), the subspace-based identification (see e.g. Van Over-
schee and De Moor (1996); Katayama (2005)), the frequency-
domain identification (see e.g. Pintelon and Schoukens (2001);
McKelvey (2002)), the closed-loop identification case (see e.g.
Van den Hof (1998); Forssell and Ljung (1999); Ninness and
Hjalmarsson (2005); Gilson and Van den Hof (2005)).
Most physical systems are continuous-time (CT) whereas,
mainly due to the advent of digital computers, research on
system identification has concentrated on discrete-time (DT)
models from underlying CT systems input/output samples. Re-
cently, interest in identification of CT systems from DT data
has arisen (see e.g. Sinha and Rao (1991); Unbehauen and
Rao (1987); Garnier and Wang (2008) and references herein)
and offer a clever solution in many cases such as irregularly
sampled data.
Moreover, systems encountered in practice are often nonlinear
or present a time-varying nature. Unlike linearity, non-linearity
is a non-property and therefore, non-linearity cannot be defined
in a general way. A common framework for the identification
of nonlinear models has nevertheless been presented in Sjöberg
et al. (1995) and Juditsky et al. (1995). Usually, nonlinear
models are classified into two classes: non-parametric mod-
els and parametric models. However, another type of models

has more recently arose the attention of the system identifica-
tion community and form an intermediate step between Lin-
ear Time-Invariant (LTI) systems and nonlinear/time-varying
plants: the model class of Linear Parameter-Varying (LPV)
systems (Bamieh and Giarré (2002); Tóth (2010)).
When considering methods that can be used to identify (linear
or non linear, CT or DT) models of systems operating in open-
or closed-loop, instrumental variable (IV) techniques are rather
attractive since they are normally simple or iterative modifi-
cations of the linear regression algorithm. For instance, when
dealing with complex processes, it can be attractive to rely on
methods, such as these, that do not require non-convex opti-
mization algorithms. In addition to this computationally attrac-
tive property, IV methods also have the potential advantage that
they can yield consistent and asymptotically unbiased estimates
of the plant model parameters if the noise does not have rational
spectral density or if the noise model is mis-specified; or even
if the control system is non-linear and/or time-varying, in the
closed-loop framework (Gilson and Van den Hof (2005); Gilson
et al. (2011)). Even if several works arise these last ten years
(e.g. Young (2011); Dankers et al. (2014); Van Herpen et al.
(2014); Laurain et al. (2010); Douma (2006)), IV methods have
not yet really received the attention that it deserves.
This paper is dedicated to the use of IV methods in several cases
of system identification. After an introduction of the IV princi-
ples in Section 2, the focus is made on closed-loop system in
Section 3, on LPV models with an application on rainfall-flow
modeling in Section 4 and on frequency domain framework in
Section 5.

2. INSTRUMENTAL VARIABLE METHOD

System identification is based on three main ingredients: data
(experiment design), model set selection, identification crite-
rion, which are used to estimate a model of a given system. In
this paper, we will mainly focus on the identification criterion
named Instrumental Variable (IV).
IV is a criterion aiming at minimizing the prediction error.
Consider a stable, linear, Single Input Single Output (SISO)
data-generating system assumed to be described as

S : y(tk) = G0(q)u(tk) + H0(q)e(tk) (1)
The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, q−1 is the
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When considering methods that can be used to identify (linear
or non linear, CT or DT) models of systems operating in open-
or closed-loop, instrumental variable (IV) techniques are rather
attractive since they are normally simple or iterative modifi-
cations of the linear regression algorithm. For instance, when
dealing with complex processes, it can be attractive to rely on
methods, such as these, that do not require non-convex opti-
mization algorithms. In addition to this computationally attrac-
tive property, IV methods also have the potential advantage that
they can yield consistent and asymptotically unbiased estimates
of the plant model parameters if the noise does not have rational
spectral density or if the noise model is mis-specified; or even
if the control system is non-linear and/or time-varying, in the
closed-loop framework (Gilson and Van den Hof (2005); Gilson
et al. (2011)). Even if several works arise these last ten years
(e.g. Young (2011); Dankers et al. (2014); Van Herpen et al.
(2014); Laurain et al. (2010); Douma (2006)), IV methods have
not yet really received the attention that it deserves.
This paper is dedicated to the use of IV methods in several cases
of system identification. After an introduction of the IV princi-
ples in Section 2, the focus is made on closed-loop system in
Section 3, on LPV models with an application on rainfall-flow
modeling in Section 4 and on frequency domain framework in
Section 5.

2. INSTRUMENTAL VARIABLE METHOD

System identification is based on three main ingredients: data
(experiment design), model set selection, identification crite-
rion, which are used to estimate a model of a given system. In
this paper, we will mainly focus on the identification criterion
named Instrumental Variable (IV).
IV is a criterion aiming at minimizing the prediction error.
Consider a stable, linear, Single Input Single Output (SISO)
data-generating system assumed to be described as

S : y(tk) = G0(q)u(tk) + H0(q)e(tk) (1)
The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, q−1 is the

8th Vienna International Conference on Mathematical Modelling
February 18 - 20, 2015. Vienna University of Technology, Vienna,
Austria

Copyright © 2015, IFAC 354

What has Instrumental Variable method to offer for
system identification?

M. Gilson1,2

1University of Lorraine, CRAN, UMR 7039, 2 rue Jean Lamour, F-54519
Vandœuvre-les-Nancy, France

2CNRS, CRAN, UMR 7039, France,
marion.gilson@univ-lorraine.fr

Abstract: This paper gathers several experiences of using instrumental variable method in different
contexts: closed-loop system identification, LPV model, frequency domain framework.

Keywords: instrumental variable, system identification, closed-loop, LPV model, frequency domain

1. INTRODUCTION

Mathematical models of dynamic systems are required in most
area of scientific enquiry and take various forms, such as dif-
ferential equations, difference equations, state-space equations
and transfer functions. The most widely used approach to math-
ematical modeling involves the construction of mathematical
equations based on physical laws that are known to govern the
behaviour of the system. While the advantage of these methods
relies on the deep physical insight of the resulting model, their
main drawback is the complexity of the model that makes them
difficult to be used in applications such as control system de-
sign, prediction or decision making.
An alternative to physically-based mathematical modeling is
the so-called data-based system identification, which can be
applied to any system where experimental data are avail-
able. A large scope of system identification approaches has
been developed over the past decades. Amongst these, we can
cite the prediction error and maximum-likelihood frameworks
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closed-loop framework (Gilson and Van den Hof (2005); Gilson
et al. (2011)). Even if several works arise these last ten years
(e.g. Young (2011); Dankers et al. (2014); Van Herpen et al.
(2014); Laurain et al. (2010); Douma (2006)), IV methods have
not yet really received the attention that it deserves.
This paper is dedicated to the use of IV methods in several cases
of system identification. After an introduction of the IV princi-
ples in Section 2, the focus is made on closed-loop system in
Section 3, on LPV models with an application on rainfall-flow
modeling in Section 4 and on frequency domain framework in
Section 5.

2. INSTRUMENTAL VARIABLE METHOD

System identification is based on three main ingredients: data
(experiment design), model set selection, identification crite-
rion, which are used to estimate a model of a given system. In
this paper, we will mainly focus on the identification criterion
named Instrumental Variable (IV).
IV is a criterion aiming at minimizing the prediction error.
Consider a stable, linear, Single Input Single Output (SISO)
data-generating system assumed to be described as

S : y(tk) = G0(q)u(tk) + H0(q)e(tk) (1)
The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, q−1 is the
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delay operator with q−ix(tk) = x(tk−i). u describes the plant
input signal, y the plant output signal. A colored disturbance
ξ0(tk) = H0(q)e0(tk) is assumed to affect the system, where
e0 is a white noise, with zero mean and variance σ2

e0
.

The following general model structure and parameter plant
model are chosen to model the system

M : y(tk) = G(q, θ)u(tk) + H(q, θ)e(tk) (2)

G : G(q, θ) =
B(q−1, θ)
A(q−1, θ)

(3)

In the prediction error method (PEM), the parameters are com-
puted by minimizing the criterion function (see Ljung (1999))

V (q, θ) =
1
N

N∑
k=1

[ε(tk,θ)]2 (4)

where ε(tk,θ) = y(tk) − ŷ(tk, θ) is the prediction error.
Therefore, the parameters are given as

θ̂ = arg min
θ

1
N

N∑
k=1

(y(tk) − ŷ(tk, θ))2 (5)

It has to be noted that the estimation of θ̂ might be a non
convex optimization problem for a general nonlinear one-step-
ahead predictor. However, the problem (5) can be simplified,
for e.g., by choosing an adequate model structure. As a result,
for a linear regression, θ̂ is provided by solving the LS solution
where

θ̂ls = arg min
θ

N∑
k=1

(
y(tk) − ϕT (tk)θ

)2
(6)

with ϕ(tk) denotes the regressor.
The other solution is to use the IV criterion where its basic ver-
sion aims at computing the estimate θ̂ by solving (Söderström
and Stoica (1983))

θ̂biv = sol

{
1
N

N∑
k=1

ζ(tk)
(
y(tk) − ϕT (tk)θ

)
= 0

}
(7)

where ζ(tk) is the so-called instrument. There is a large amount
of freedom in the choice of the instrument. It should be corre-
lated with the data but uncorrelated with the noise.This idea has
been generalized to the extended IV framework where

θ̂xiv = arg min
θ

∥∥∥∥∥

[
1
N

N∑
k=1

L(q)ζ(tk)L(q)ϕT (tk)

]
θ

−

[
1
N

N∑
k=1

L(q)ζ(tk)L(q)y(tk)

]∥∥∥∥∥
2

W

, (8)

where ζ(t) ∈ Rnζ with nζ ≥ 2n, ‖x‖2
W = xT Wx, with W a

positive definite weighting matrix and L(q) a stable prefilter.

By definition, when G0 ∈ G, the extended-IV estimate is
consistent under the following two conditions 1

• ĒL(q)ζ(tk)L(q)ϕT (tk) is full column rank,
• ĒL(q)ζ(tk)L(q)v0(tk) = 0.

The interesting property of the IV methods is that they provide
asymptotically unbiased estimates even if the noise is miss-
specified. However, the choice of ζ(tk), nζ , W and the prefilter
L(q) may have a considerable effect on the covariance matrix.

1 The notation Ē[.] = limN→∞
1
N

∑N

k=1
E[.] is adopted from the predic-

tion error framework of Ljung (1999).

The optimal IV algorithm providing the minimum value of the
covariance matrix is known to be obtained for (see Söderström
and Stoica (1983); Young (2011, 2014))

ϕ̊f (tk) = Lopt(q)ϕ̊(tk), (9)

Lopt(q) =
1

A0(q−1)H0(q)
, and ζ(tk) = ϕ̊(tk). (10)

where ϕ̊(tk) is the noise-free part of ϕ(tk). Using equations (8)
and (9)-(10), the following IV estimate is optimal

θ̂opt
iv (N) =

(
N∑

t=1

ζf (tk)ϕT
f (tk)

)−1 (
N∑

t=1

ζf (t)yf (t)

)
(11)

and where the regressor ϕf (tk) = Lopt(q)ϕ(tk), the output
yf (tk) = Lopt(q)y(tk) and the instrument vector ζf (tk) =
Lopt(q)ζ(tk) are filtered by Lopt(q) (10).
It has to be noted that in this IV estimator, the optimal choice
of instruments and prefilter is dependent on unknown system
properties which has to be taken care of with an iterative
procedure.

3. CLOSED-LOOP SYSTEM IDENTIFICATION

Cc(q) G0(q)

H0(q)

�
+−

�+
+ �+

+� ��
�

� � � ��

�

r1(tk)

r2(tk) u(tk)
ξ0(tk)
y(tk)

e0(tk)

Fig. 1. Closed-loop system configuration

The basic difference between open-loop and closed-loop (CL)
system identification is due to the correlation between the
input u(tk) and the noise which conduces the usual open-loop
system identification procedure to bias results in the closed-
loop context. Therefore several closed-loop methods have been
dealt with in the literature and this paper focuses on the IV
solution.
Consider a stable, linear, SISO, closed-loop system of the form
shown in Figure 1. The data generating system is assumed to be
given by the following relations

S :
{

y(tk) = G0(q)u(tk) + H0(q)e0(tk)
u(tk) = r(tk) − Cc(q)y(tk),

(12)

where r(tk) = r1(tk) + Cc(q)r2(tk). (13)

The plant is denoted by G0(q) = B0(q−1)/A0(q−1) with the
numerator and denominator degree equals to n0, the controller
is denoted by Cc(q). The general model structure and parama-
trized plant model are chosen respectively as

M : y(tk) = G(q, θ)u(t) + H(q, θ)ε(tk, θ), (14)

G : G(q, ρ) =
B(q−1, θ)
A(q−1, θ)

(15)

where n denotes the plant model order and with the pair (B, A)
assumed to be coprime.
As for the open-loop situation, the choice of the design vari-
ables as the instrument ζ(t) and the prefilter L(q) have a con-
siderable effect on the covariance matrix produced by the IV
estimation algorithm. The covariance properties of the closed-
loop IV methods have been investigated in Gilson and Van den
Hof (2005) and further insights about the choice of these design
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