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Abstract: We introduce an algorithm for the explicit treatment of contact line motion for thin-
film problems and compare its solutions with exact source-type solutions and their asymptotic
behavior near the contact line. The algorithm uses a variational formulation and avoids dealing

with singularities near the contact line.
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1. MODEL AND ALGORITHM

The spreading of a viscous liquid droplet of height h(¢, x)
over a solid substrate by surface tension is governed by a
partial differential equation of the type

h4 (|h|"hazz)e = 0, (1a)
h(0,x) = ho(z), (1b)

where we use the notation h = h; for time derivatives.
For illustration of the geometry see fig. 1. The mobility
exponent n depends on the type of friction with the
substrate, where usually one has 0 < n < 3 as it is
discussed by Eggers (2004). Additionally we assume that
the initial support is an interval (x_,z4) := supp ho,
where x4 evolve with time. As boundary conditions we
consider a zero contact angle and specify a kinematic
condition, so that for ¢ > 0

he(t,xz4) =0, (1lc
iy = Hm (|h""" hyws) - (1d

)

x4 )
Solutions of (1) conserve the volume v(t) = [ hdz = v(0)
and it is known that the support moves with finite speed,
see Hulshof et al. (1998). For n > 1 the kinematic condition
(1d) implies hgz, — 00 as @ — x4 for the contact line to
move with a finite velocity. This singularity with the fact
that h — 0 as ¢ — x4 is one major difficulty in using (1d)
to evaluate the velocity of the boundary.

/

Fig. 1. droplet parametrized by h on a solid substate

The thin-film problem is known already for quite some
time, i.e. existence of weak solutions was shown by Bernis
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and Friedman (1990). In the context the free-boundary
problem above existence of solutions in weighted Hoélder
spaces was shown by Giacomelli and Kniipfer (2010).
In general one can not guarantee that after starting
with an interval (z_,x) the solution will always stay
strictly positive inside (x_(t),z+(t)) and no topological
transitions occur.

Numerical algorithms for this problem mainly rely on
global solutions for this problem, i.e. algorithms which
solve for h(t,z) for z € R and preserve non-negativity
outside (x_,x) in a sense, see e.g. the works by Zhornit-
skaya and Bertozzi (1999); Griin and Rumpf (2000). Here
we go a different route and do not look for global solutions
but rather seek solutions of the free-boundary problem (1).
Such an approach is certainly not feasible to treat topolog-
ical transitions. Our proposed method is to first solve (1a)
using the space and time-discrete variational formulation
using finite elements just on the support (z_,zy). Here

we seek piecewise linear functions h, 7 that satisfy

/$+(h¢ + |h|" Ty ¢py) da = 0, (2a)

T4 . T4
/ (7o — Thyp,) de = / hys dx, (2b)

for all piecewise linear test functions ¢, defined on
an decomposition of the interval (z_,zy). No essential
boundary conditions are imposed on solutions or test
functions. Note that all appearances of A and x4 are
treated explicitly. In order to arrive at (2) we introduced a
new variable m = —h,, and split (1a) in two second order
equations. Furthermore we used (1c) the zero contact angle
hy = 0 and a no-flux condition |h|"hy., = 0 at x4 as
natural boundary conditions. Only in (2b) defining 7 we
replaced h by the more implicit expression h + 7h where
7 = t*+1 ¥ to obtain a stable method similar to a (semi)-
implicit Euler method. For any given h defined on (z_, )

this gives us the time-derivative h in the Eulerian reference
frame.

However, we need another method to compute x4+ and
h at time t**! from the corresponding data at time ¢*.
Here we use the fact that in a reference frame moving
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with velocity ¢ time derivatives of H(t,y) = h(t,¥(t,y))
simply transform according to

H = h+ {hy, (3)

where y € (z_(tF),z(t?). If we choose ¢ (t,z+(t*)) =
x4(t) then H(t,z4(t*)) = 0 which implies h = —1h, at
z4. In one spatial dimension we can simply choose

U(ty) = (1) +y(z4(t) — (1)), (4)
withy = (z—2_(t*)) /(x4 (t*)—z_(t*)) as such a mapping.
Now we can explicitly and uniquely determine H, from

h using the known h, and (3). For small time steps 7 < 1
we can assume h, = hy.

Note that for a finite contact angle this procedure makes
sense in the discrete and continuous setting. However, one
might wonder if evaluating (3) for ¢ at a zero contact
angle is well-defined at the boundary. At least for linear
elements the weak derivative h, is piecewise constant, so
that provided h is positive inside (z_,x,) at t*, then h,
has a proper nonzero sign.

Algorithm summarized

Thereby the strategy to solve the free boundary prob-
lem(1) is as follows.

For given solution h,z1 at time t*

(i) Solve the semi-implicit in time finite element varia-
tional formulation (2) for h, .

(ii) Use the prior information of h, at t* to compute H
and 1 from the previously computed h as explained
above.

(iii) Evolve h and the domain (z_,z,) by updating all
vertices of the finite element decomposition and all
nodal values according to

" = o 4 (b,
= nk + 7 H,
as it is natural in a comoving coordinate system.

Writing this slightly more detailed, what we mean
is

R = pRHL (R =pk (28 4 1 H; = BE 4 7 H,,
i .
zi+1 = 2l 4 (),
for all nodes i of the domain decomposition. Note that

the definition of ¢ ensures ¥ is again an admissible
decomposition provided that z_ < x.

This concludes a single time-step of the algorithm. Note
that this algorithm can be naturally extended to higher
dimensions as we discuss later. Note that if we include
boundary terms in the definition of « in (2b), then we
can also include nonzero contact angles |h,| = tan6 in
the problem. Using a variational approach to solve (1) is
thereby superior to other numerical methods, e.g. finite
differences, in the sense that it allows a simple implemen-
tation of all boundary conditions as natural boundary con-
ditions. Furthermore note that (1) has a gradient structure
with an energy E that decreases according to
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Fig. 2. Relative error of support width of numerical solu-
tion compared to exact solution at various times.

and m = §E/dh. For the problem here we have

E(h) :/ %|hx\2dx.

2. NUMERICS FOR SOURCE-TYPE SOLUTIONS

The following section is intended as a validation for the
numerical method proposed before. Therefor let us con-
tinue with a discussion of source-type solutions. These are
solutions of (1) with initial data ho(z) = ¢ d(x) of the form

h(t,x) =t~ f(n),
where a = n%—zl' It was proven by Bernis et al. (1992) that
there exist no source-type solutions for n > 3, whereas
for 0 < n < 3 there exists precisely one even nonnegative

source-type solution. Only for n = 1 an explicit expression
for a source-type solution is known

~ 1 2
fn) = {120(a a

0 otherwise,

n=at"®

)2 for—a<n<a

and it was found by Smyth and Hill (1988). We use this
particularly smooth solution as a first test. The general
behavior of the singularity for 7 — a depends on the
exponent n. Bernis et al. (1992) furthermore prove the
asymptotics of the solution is

f(n) ~ Bi(a—n)? 0<n<3/2
f(n) ~ Ba(a —n)*(—log(a —n))*"* n=3/2,
f(n) ~ Bs(a—mn)*/" 3/2<n<3

as 7 a. The case 3/2 < n < 3 has been further
sharpened by Giacomelli et al. (2013), who proved that
higher order corrections of f can be written as an analytic
function in two variables. In particular the next order of
the expansion of f is of the form

f(n) ~ By(a — 77)”(1 —bla — 17)5 +O(a — n)min{l,Qﬂ})

where v = 3/n and g = Y=3H12v=8=3v+4 Gyich singular-
ities are no particularity of source-type solutions but prob-
ably present in any moving contact line for 3/2 < n < 3.
In the case n = 3 contact lines do not move due to the
well known contact line singularity. First we compare with
the exact solution for n = 1. Using ho(z) = f(z) with
a = 1/2 gives the numerical and exact solution shown in
fig. 3. In the finite element method we have used standard
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