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1. INTRODUCTION 

Undamped fluid flow in a pipeline is described by the wave 
equation, which Ingard (1988) treats as a common model for 
electromagnetic waves on a cable, sound waves in a fluid,  
longitudinal waves on a solid bar, and torsional waves on a 
rod. If damping is taken into account, the model for oil 
hydraulic applications becomes more specific. It can be based 
on laminar flow conditions since turbulence would increase 
pressure loss and is usually avoided in oil hydraulics. The 
transient laminar flow of a compressible Newtonian fluid in a 
straight circular pipeline was described by transcendental 
transfer functions from D'Souza et al. (1964) and has further 
been modelled by rational fraction modal approximations. 
Such models were published by Almondo et al. (2006), 
Ayalew et al. (2005), Hsue et al. (1983), Mäkinen et al. 
(2000), van Schothorst (1997), and Yang et al. (1991); they 
can be used for time-domain simulation and are well suited to 
study the dynamic behaviour of individual pipelines. 
Compared to the transcendental model by D'Souza et al. 
(1964), Kojima et al. (2002) encountered large errors when 
they combined modal approximations for the simulation of 
compound pipeline systems; they therefore suggested to 
calculate transcendental transfer functions of the entire 
system and approximate the result in a second step. 

For a closed-end pipeline, injected flow rate excitations and 
resulting pressure responses, Mikota (2013) derived the 
modal decomposition of the transcendental pipeline model. 
Transcendental modal transfer functions were approximated 
by rational fraction expressions, which lead to a multi-
degrees-of-freedom description of the pipeline. Mikota 
(2014) used this model to investigate a specific pipeline 
network and experienced similar problems as Kojima et al. 
(2002). However, by comparing transcendental and 
approximated transfer functions of the network, it became 
clear that these problems were located in the low frequency 

range. They were explained by the fact that for damped 
pipeline systems, the modal approximation of an individual 
pipeline is rather inaccurate in the frequency range below the 
first pipeline resonance. If the pipeline becomes part of a 
network, this frequency range will contain one or more 
network resonances, for which the approximation will be 
wrong. 

In this paper, the modal approximations from Mikota (2013) 
are modified in a way that corrects the low frequency errors 
for a predefined pipeline system. Proportional damping is 
enforced on the pipeline system model so that all 
eigenvectors can be taken from the undamped case. In the 
low frequency range, natural frequencies and damping ratios 
are calculated from single frequency approximations of the 
individual pipelines. Higher natural frequencies and the 
respective damping ratios are taken from the viscous 
damping approximaton as used by Mikota (2014). The new 
method is applied to the pipeline network from Mikota 
(2014) and leads to a significant improvement of the multi-
degrees-of-freedom pipeline system model. 

2. EXAMPLE SETUP AND PREVIOUS RESULTS 

 

 

 

Fig. 1. Hydraulic pipeline network. 

To motivate the necessity of a low frequency correction, 
example and results from Mikota (2014) are summarized in 
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this Section. Figure 1 shows the pipeline network under 
consideration. It consists of pipeline 1 with l1 = 2.3 m, which 
is connected to a pump, and pipelines 2 and 3 with l2 = l3 = 
3.0 m, each of which leads to a closed volume with 
Vc = 1 dm3 (e.g. a cylinder volume). The inner radius of all 
pipelines equals r = 1 cm. The fluid bulk modulus is taken as 
E = 2⋅109 Pa and the fluid density as ρ = 1000 kg⋅m-3, leading 
to a speed of sound c = /E 1414 m⋅s-1; the kinematic 
viscosity is taken as   = 5⋅10-5 m2⋅s-1. 

 

Fig. 2. Comparison of transfer functions between flow rate 
excitation and pressure response at the inlet of pipeline 1. (a): 
magnitude, (b): phase. line 1: approximated (uncorrected 
multi-degrees-of-freedom), line 2: transcendental. 

The pump injects a defined flow rate excitation at the inlet of 
pipeline 1. It therefore makes sense to consider the transfer 
function between flow rate excitation and pressure response. 
By a comparison of transcendental and approximated transfer 
functions, Fig. 2 shows how an uncorrected multi-degrees-of-
freedom approximation exaggerates the magnitudes at the 
lower two resonances. A linear amplitude scale is used to 
demonstrate the extent of the problem.

3. HYDRAULIC PIPELINE SYSTEM MODEL 

Compared to Mikota (2014), the hydraulic pipeline system 
model is rebuilt from a modal description in which some 
natural frequencies and damping ratios are corrected. 
Although the underlying multi-degrees-of-freedom model of 
an individual pipeline features proportional damping, this is 
not necessarily the case for the assembled multi-degrees-of-
freedom model of the hydraulic pipeline system. To keep 
within the framework of proportional damping, the 
eigenvectors of the corrected system are assumed to be real 
and can therefore be taken from the undamped version of the 
pipeline system model. 

3.1  Undamped Case 

For an undamped pipeline with closed ends, the modal 
decomposition of the transfer function between the flow rate 

excitation Qex at the axial coordinate xk and the pressure 
response P at the axial coordinate xj reads 
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where l denotes the length of the pipeline, A is the pipeline 
cross-sectional area, E is the bulk modulus of the fluid, and c 
is the speed of sound. 

The mobility function of a mechanical system is defined as 
the frequency response function between excitation force and 
velocity response. For undamped and proportionally damped 
systems, Ewins (2000) derives the description of the mobility 
function in terms of eigenvalues and mass-normalized 
eigenvectors.  

In the following, flow rate excitation and pressure are 
considered at the discrete coordinates x1, x2, …, xN+1. If (1) is 
truncated after mode N, the respective frequency response 
function can be recognized as mobility function of an 
undamped mechanical multi-degrees-of-freedom system with 
mass-normalized (N+1)×1 eigenvectors 
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the orthogonality relations for mass-normalized eigenvectors 
that the mass matrix of the equivalent mechanical model 
reads 
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