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a  b  s  t  r  a  c  t

Near-infrared  hyperspectral  imaging  together  with  versatile  chemometric  algorithms  including  inva-
sive  weed  optimization  (IWO)  were  employed  for  optimizing  fast  classification  of  bacterial  colonies  on
agar  plates.  Hyperspectral  images  of colonies  from  six  strains  of bacteria  were  collected,  and  classifica-
tion  models  were  established  by applying  partial  least  squares-discriminant  analysis  and  support  vector
machine  (SVM)  on the  original  as  well  as  difference  spectra.  The  parameters  of  SVM  models  were opti-
mized  by  comparing  genetic  algorithm,  particle  swarm  optimization  and  the proposed  IWO.  The  results
showed  that  difference  spectra  amplified  the variations  among  the  spectra  of  the  six  strains  thus  poten-
tial  for  improving  classification  accuracy.  The  best  full wavelength  classification  model  was  IWO-SVM
model  which  produced  overall  correct  classification  rates  (OCCRs)  of  100.0%  and  97.0%  for  calibration  and
prediction,  respectively.  Besides,  competitive  adaptive  reweighted  sampling  (CARS),  GA and  successive
projections  algorithm  (SPA)  were  utilized  to  select  important  wavelengths  to  establish  simplified  models.
Among  them,  the  simplified  IWO-SVM  model  based  on  the  feature  wavelengths  selected  by  CARS  gave
the  best  classification  rates  of  97.2%  and  96.0%  for calibration  and  prediction,  respectively.  The  study
demonstrated  that  IWO was  a  useful  tool  for optimizing  calibration  models  thus  potential  for  usage  in
many  other  applications.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Global concerns over food microbiological safety are grow-
ing with the increasingly reported cases of foodborne illness and
broadened ranges of infections [1]. Bacterial pathogens, including
Escherichia coli, Listeria,  and Staphylococcus are three of the main
species of microbes that can threaten public health. Enterohemor-
rhagic Escherichia coli cause various foodborne illnesses including
bloody or non-bloody diarrhea and life-threatening hemolytic ure-
mic  syndrome (HUS) as well as thrombotic thrombocytopenic
purpura (TTP) by producing potent Shiga toxins [2]. Listeria belongs
to psychrophile and can grow well at refrigeration temperature. Lis-
teriosis produced by Listeria monocytogens can lead to a mortality
rate of ca. 30%, and immune-compromised people and pregnant
women are the most possible victims [3]. Meanwhile, consum-
ing food containing 100–200 ng of Staphylococcal toxins would
also cause gastroenteritis to a healthy [4]. Therefore, it is urgently
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needed to identify and classify bacteria strains to ensure public
health. Current routine methods rely heavily on plating and culture
methods which are recognized as well-established gold-standard.
However, these methods are usually time-consuming, laborious
and tedious thus not suitable for real-time detection and inspection.
More recently, a variety of new methods based on immunology (i.e.,
enzyme-linked immunosorbent assay, ELISA) and molecular biol-
ogy (e.g., polymerase chain reaction, PCR) were developed [5,6].
The application of these new methods has greatly enhanced the
detection speed as well as accuracy if combined with culture-based
methods. Nevertheless, the new methods may  require high exper-
tise and expensive instrument for the detection experiments.

As a novel technology, hyperspectral imaging (HSI) enables
image and spectral assays in one single integrated system and has
showed significant power in fast and nondestructive quality and
safety measurement of food and agricultural products [7–10]. The
application of HSI in microbial detection was  also summarized [11].
The principle for bacterial classification based on hyperspectral
imaging sensors relies on the utilization and analysis of chemical
information within the bacterial colonies due to species or sub-
species difference. Such variations are then captured and reflected
in the hyperspectral images. Therefore, by investigating hyper-
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spectral image variations using multivariate analysis approaches,
bacterial attributes can then be attained. With respect to bacterial
colony classification, the feasibility of hyperspectral imaging for
classification of Campylobacter against non-Camp.  colonies grown
on different agar plates was first confirmed [12,13]. The authors
applied principal component analysis (PCA) to identify important
wavelengths and a pattern classification algorithm together with
Bhattacharyya distance for separation of Camp. colonies from non-
Camp. colonies and agar background. The classification accuracy
in species level as shown in these studies could both reach 99%.
Salmonella serotypes were also classified with similar accuracy by
using quadratic discriminant analysis [14]. Besides, Yu et al. [15]
established both full and selected wavelength models to classify
bacterial colonies into three species of E.coli, Listeria and Staphylo-
coccus, where the best classification accuracy was  between 95.92%
and 100%.

For the identification of six different E.coli serogroups, Park
et al. [16] employed a hyperspectral microscope imaging (HMI) sys-
tem based on acousto-optic tunable filters (AOTF). In a later study
for classification of six different non-O157 E.coli strain colonies,
Yoon et al. [17] applied principal component analysis on the
preprocessed pixel spectra and employed Mahalanobis distance
classifier and k-nearest neighbor (kNN) classifier for class assign-
ment. The overall classification accuracy was over 95% for both
pixel- and colony-level classifications and the main contributor
for such successful separation was the distinctive color informa-
tion of colonies of each type. Therefore, RGB color information was
subsequently extracted from the visible and near infrared hyper-
spectral images and subjected to PCA and kNN for classification
of bacterial colonies where up to 92% accuracy was achieved [18].
Instead of Vis-NIR region (typically 400–1000 nm), Kammies et al.
[19] employed hyperspectral imaging in longer wavelength of NIR
region (1000–2500 nm)  to classify Bacillus cereus,  Escherichia coli
and Salmonella enteritidis in species level and Staphylococcus aureus
and Staphylococcus epidermidis in strain level. All of the above-
mentioned studies demonstrated that hyperspectral imaging is
a powerful tool for colony classifications. Nevertheless, it was
noticed that the majority of the current studies focused only on
specific bacteria that were grown on their preferred selective
agars. For example, for classification of E.coli bacteria, rainbow
agar and Sorbitol MacConkey agar may  be utilized for bacterial
cultivation. Though relevantly accurate in such a circumstance,
the methodologies adopted above may  require intensive usage of
miscellaneous selective agars for the classification of bacteria if
their background information is absent. In other words, more agars
should be involved to determine species attributes of the bacteria
under study before their serotyping. By doing this, the experimen-
tal complexity and burdens will be substantially increased making
the whole analytical process less cost-effective. Therefore, it is very
important to use one-agar-for-all protocol in order to include vari-
ability due to other factors than bacteria as well as to classify
bacteria in strain/subspecies level while assuming their species
information is unknown, that is, in a blind test. Moreover, bacte-
rial classification based on hyperspectral imaging relies largely on
the chemometric algorithms exploited, thus optimization of mod-
eling parameters becomes an important issue. Meanwhile, due to
the intrinsic disadvantage of hyperspectral imaging where massive
and perhaps redundant information is present, selection of fea-
ture wavelengths for simplification of computing and reduction of
system cost is preferred. Therefore, taking E.coli, Listeria and Staphy-
lococcus for example, this study aimed to verify the feasibility of
one-agar-for-all classification of bacteria in the subspecies level by
employing Vis-NIR hyperspectral imaging. The sub-objectives were
(1) to verify the efficiency of difference spectra for classification;
(2) to enhance calibration models by applying various intelligence

Fig. 1. Configurations of hyperspectral imaging system.

algorithms in SVM parameter optimization and (3) to optimize
wavelength selection during the development of simplified models.

2. Materials and methods

2.1. Bacterial agar plates

Three strains of Escherichia coli bacteria (i.e., E.coli O8,  O11 and
O138) [20], two strains of Listeria (i.e., L. monocytogens and L. seel-
igeri) and Staphyloccocus aureus were used in this study. These
bacteria were collected from State Key Laboratory of Agricultural
Microbiology, Huazhong Agricultural University. Bacterial suspen-
sions were prepared according to previously described methods
[21]. Briefly, frozen stored bacteria (−80 ◦C) were activated through
incubation on tryptone soya agar (TSA, BD, USA) at 37 oC for
22 ± 2 h. The activation process was  repeated twice to ensure bac-
terial viability. One single typical colony was subsequently picked
and inoculated into tryptone soya broth (TSB, BD,  USA) for culture
at 37 ◦C for 18 ± 2 h. Serial dilutions were then made and bacte-
rial agar plates were prepared by the pour-plate technique. After
incubation at 36 ± 1 ◦C for 24 ± 1 h, the plates were harvested and
subjected to hyperspectral image acquisition. It should be noted
that for all cultivation of all bacterial subspecies, only TSA (a com-
monly used type of agar for all bacteria) was used to testify the
feasibility of the one-agar-for-all methodology for bacterial colony
classification or identification.

2.2. Image acquisition and spectral extraction

The apparatus setup is illustrated in Fig. 1. As indicated, the
reflectance hyperspectral imaging system is mainly composed of
four parts, including a hyperspectral spectrograph (SPECIM, V10E,
Finland), a CCD camera (Clara, Andor, UK), two halogen light sources
(DECOSTAR51, MR16, OSRAM, Germany), a high-precision trans-
lation stage attached with a sample holder (Zolix, China) and a
personal computer. The hyperspectral images were recorded in
the wavelength range of 400–1000 nm with a spectral resolution
of 2.8 nm and a spectral interval of 1.25 nm.  To enhance the qual-
ity of captured images, the exposure time of the camera was set
as 100 ms  when the translation stage moved at a speed of 2 mm/s.
Besides, the distance between camera and the plate surface was
ca. 400 mm.  All the parameters remained the same throughout the
experiment.

The raw data (IRaw) acquired were in radiance which may vary
in different scans due to apparatus status variations. In order to
make the data more meaningful and applicable for chemical inter-
pretations, the following equation was  employed to calibrate the
raw data into reflectance unit [7].

R = IRaw − IDark

IWhite − IDark
(1)
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